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Organisation team

TrackML was a data science competition 
organized in 2018 on Kaggle 
and CodaLab platforms.

The aim of the challenge was to
• stimulate development of new particle

tracking algorithms for the HEP community
• Get the best ideas and techniques from the

Machine Learning community

PANDA Collaboration Meeting 19/2 | M.Kunze 2

https://competitions.codalab.org/competitions/20112
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CodaLab Schematic

PANDA Collaboration Meeting 19/2 | M.Kunze 4



TrackMLchallenge in anutshell

• Based on a simplified, yet realistic detectormodel
• non-uniform magnetic field similar to ATLAS  solenoid
• detailed simulation of particle interactions withdetector 

material
• three types of Si-detectors: pixel, shortstrips, long strips

• The goal is reconstruct all tracks in thedetector
• 10K tracks/event, min pT= 120 MeV, min number of hits =4

• Test data: 50 events, each event consists of
• a list of particle position measurements (hits) in 3D space(x,y,z)
• a list of individual silicon detector cells associated witheach hit

• Training data (10K events) : the above + groundtruth
• 0.1 billion truth tracks, 1 billion hits,size O(100 Gb)

• Solution
• unique hit-to-track associations for testevents
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TrackML event : 100K points, 10Ktracks

TrackML detector geometry : r-zview



Throughput phase Leader Board

PANDA Collaboration Meeting 19/2 | M.Kunze 6



MikadoTracker
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no machine learning used

https://gitlab.com/sgorbuno/MikadoTracker/blob/master/doc/MikadoTrackerForTrackML.pdf


FASTrack
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https://github.com/demelian/fastrack/blob/master/Fastrack_document.pdf


Throughput phase 3rd place
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Disc section

Tube section

ca. 500k
99.4%

ca. 300k
97.2%

ca. 2 Mio.

https://competitions.codalab.org/forums/16834/3317/


Directed Graphs

A directed Graph is a graph 
whose edges are all directed

Applications
• one-way streets
• flights
• task scheduling
• …

A

C

E

B

D

PANDA Collaboration Meeting 19/2 | M.Kunze 10



Directed Acyclic Graphs (DAG)

A directed acyclic graph or DAG is a directed graph with no directed cycles:
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Gaming: Sparse Voxel Octrees (SVO)
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• Raytracing
• Compression of data
• Multi-scale resolution



Voxel (Volume Pixel)

Define spatial elements in f*q (voxel)
• Organize the voxels in DAGs according to 

track evolution in radial direction
index = (phi<<32) | (theta<<24) | (layer<<16) | module;

• Flexible to model even arbitrary paths 
(kinks, missing hits, outliers, random walk, ..)

• Training is done with MC tracks of typically 
15-25 events

Multiscale resolution (Better use SVOs?)
• 2*1 DAGs for pair finding (slices)
• 12*14 DAGs for triple finding (tiles)

Path finding
• Sort event hits into the trained DAGs
• Seed and follow the path strategy
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Pattern Recognition with Machine Learning

Intuition
• Model free estimator
• Start with basic quantities
• Coordinates, simple derived values
• Only very basic detector specific information

Input parameter space
• Polar coordinates (Rt, f, z)
• Directional cosines
• Simple helix calculation (score)

Training
• Supervised: presenting MC ground truth
• Unsupervised: presenting probability density function
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In principal not needed, but speeds up the thing !



Input Parameter Space

Given two hits (clusters of silicon cells): predict if they belong to the same track

• Estimate track direction
from the cluster shape:

Features for the training
• Polar coordinates of the hit doublet: (r1,f1,z1), (r2,f2,z2)
• Triplet finder works the same with a hit triplet
• Simple helix score
• Angle/length deviations of the vector d projection from

the values predicted by the shape of cluster 1
• Angle/length deviations of the vector d projection from

the values predicted by the shape of cluster 2

d
eigenvector of covariance
matrix of the siliconcells

silicon pixelmodule

cluster_1

cluster_2
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Input Parameter Folding

The tracking problem is symmetric wrt. polar coordinates
• Fold the input parameter space into an octagon slice using “abs” function
• Considerable improvement of the separation strength of the parameters
• Need less statistics / yield better results
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Hit Doublet / Triplet Classification: MLP
“Shallow learning” ;)

• Classify the doublets and triplets with neural networks
• Multi Layer Perceptron: MLP1 8-15-5-1 / MLP2 9-15-5-1 / MLP3 10-15-5-1
• Input: hit coordinates, directional cosines towards the clusters, helicity score wrt. origin
• Output: doublet/triplet quality, supervised training with Monte-Carlo ground truth
• Training: Typically 10 events, O(Mio) patterns, 500 epochs, one hour on standard PC
• “Receiver Operation Characteristics” (ROC) curves indicate good quality
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Worse due to vertex shift !

Doublet finder (disc) Doublet finder (tube) Triplet finder



Hyperparameter Tuning

Automated tests with docker / singularity to maximize CodaLab score
Test set of 50 events not used by training. Optimize:
• Spatial resolution / training of DAGs
• Network topology and cuts on output wrt. event size
• Run time / accuracy trade-offs
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Multi Threading

• Well defined algorithmic steps for pattern recognition
• Efficient parallelism on the basis of DAGs

• Form doublets from seeding hits in a DAG (MLP1, MLP2)
• Extend the doublets to triplets (MLP3)
• Extend the triplets to path segments 
• The path segments are merged into tracklets
• Remove duplicate solutions

The tracklets are merged into a common tracking solution by serial tasks
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Parallel tasks: ca. 4 seconds

Serial tasks: ca. 0.8 seconds

Serial tasks: ca. 0.3 seconds



Scaling Behavior

Scaling tests have been performed with Amazon EC2
• Instance type c5n.9xlarge (36 cores)
• Core power comparable to CodaLab cores
• Code scales up to 16 cores (Score: 1.022, accuracy 92.3%, 1.7s)
• Limited by serial code: Sorting tracklets into tracks (improve by use of OpenMP ?)
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Machine Learning Advantage

Model free estimator
• Solution may be easily transferred to a different context

Graceful degradation in presence of changes
• Geometry
• Dead channels
• Calibration
• …

The DAGs may represent arbitrary tracking paths
• Inhomogeneous magnetic field
• Kinks
• …
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Machine Learning Software:
Neural Network Objects

Neural Network Objects (NNO) is a C++ class library for Machine 
Learning based on the ROOT framework

Supervised models
• Multi-Layer Perceptron (TMLP, TXMLP)
• Fisher Discriminant (TFD)
• Supervised Growing Cell Structure (TSGCS)
• Supervised Growing Neural Gas (TSGNG) 
• Neural Network Kernel (TNNK)

Unsupervised models
• Learning Vector Quantization (TLVQ)
• Growing Cell Structure (TGCS)
• Growing Neural Gas (TGNG)
Published on https://github.com/marcelkunze/rhonno

The solution has also been trained with ROOT/TMVA, yields comparable results.
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https://github.com/marcelkunze/rhonno
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