Reconstruction of merged π^{0} in the Barrel EMC PANDA Collaboration Meeting 2/19

Jana Rieger

June 25, 2019

What I'm supposed to do

- Efficiency and acceptance studies for PANDA Day-1 setup
- Channel: p p \rightarrow p p π^{0}
- Beam momentum (1.5-15) GeV/c
- Test sample
- BOX generator π^{0} s @ 5-15 GeV/c
- Isotropic in ϑ and φ
- PandaRoot full simulation
- Day-1 setup
- π^{0} decay performed by GEANT 3
- Reconstruction of $\pi^{0} \rightarrow \gamma \gamma$

Motivation

π^{0} reconstruction efficiency

Efficiency Map

Efficiency P

Efficiency Map

Efficiency Theta

π^{0} Decay

- π^{0} decay in rest frame
- $\gamma \mathrm{s}$ are emitted back to back

Figure: π^{0} decay in its rest frame.

- π^{0} decay in lab frame
- $\gamma \mathrm{s}$ are boosted forward
- Hit neighboring/same EMC crystal
- Not resolvable with bump splitting algorithm
- Merged π^{0}

When does merging occur?

Where does merging occur?

γ impact separation in cm

- $\geq 5.7 \mathrm{~cm}$ (yellow region): No merging f

Analytical reconstruction of merged π^{0}

Moment analysis of clusters

- Based on moment analysis of clusters
- $n^{\text {th }}$ moment defined as:

$$
\begin{equation*}
\left\langle x^{n}\right\rangle=\frac{\sum E_{i} x_{i}^{n}}{\sum E_{i}} \tag{1}
\end{equation*}
$$

$$
E_{i}: \text { Digi energy, } x_{i}: \text { Digi position }
$$

- Sum over digies contributing to cluster
- Simplify calculation: Rotation in $\left\langle x_{0} y_{0}\right\rangle$ co-moment eigenframe

Analytical reconstruction of merged π^{0}

Rotation in $\left\langle x_{0} y_{0}\right\rangle$ co-moment eigenframe

Picture adapted from: "Photon and Neutral Pion reconstruction", O. Deschampset. al. LHCb Gollaboration, 2003

Analytical reconstruction of merged π^{0}

Moment analysis of clusters

- Relations in the $\left\langle x_{0} y_{0}\right\rangle$ co-moment eigenframe:

$$
\begin{align*}
E & =E_{A}+E_{B} \tag{2}\\
\left\langle x^{1}\right\rangle & =\frac{x_{A} E_{A}+x_{B} E_{B}}{E}=0 \tag{3}\\
\left\langle x^{2}\right\rangle & =\frac{x_{A}^{2} E_{A}+x_{B}^{2} E_{B}}{E}+\sigma_{x}^{2} \tag{4}\\
\left\langle x^{3}\right\rangle & =\frac{x_{A}^{3} E_{A}+x_{B}^{3} E_{B}}{E} \tag{5}
\end{align*}
$$

- Leading to the invariant mass of the cluster

$$
\begin{equation*}
M_{A B}^{2}=\frac{E^{2}}{r^{2}}\left(\left\langle x^{2}\right\rangle-\left\langle y^{2}\right\rangle\right) \tag{6}
\end{equation*}
$$

- Rotated back in the original frame

$$
\begin{equation*}
M_{A B}^{2}=\frac{E^{2}}{r^{2}} \frac{\left\langle x_{0}^{2}\right\rangle-\left\langle y_{0}^{2}\right\rangle}{\cos \left(2 \varphi_{0}\right)} \tag{7}
\end{equation*}
$$

π^{0} Test Sample

- 100000 BOX generator events
- Single π^{0} @ $15 \mathrm{GeV} / \mathrm{c}$
- Only in barrel EMC
- Set option "nomcclean" for pid
- Do pseudo MC-match if π^{0} momentum vector points approx. to cluster centroid

Invariant Mass Spectrum

Invariant mass

Invariant Mass of π^{0}

- Fit gaussian + straight line

- $\mu=146 \mathrm{MeV}, \sigma=46 \mathrm{MeV}$
- Reconstruction of $109078 \pi^{0} \mathrm{~s}$

Bump Examples

- Bump from merged π^{0} without match, $\mathrm{m}=0.155 \mathrm{GeV}$

Bump from merged pi0

Bump Examples

- Bump from merged π^{0} with MC match, $m=0.155 \mathrm{GeV}$

Bump from merged pi0

Bump Examples

- Bump from photon, $\mathrm{m}=0.053 \mathrm{GeV}$

Outlook

- Include Forward + Backward Spectrometer
- Include as task in PandaRoot
- Calibration for π^{0} mass
- Looking for systematics

