Reconstruction of merged π^0 in the Barrel EMC PANDA Collaboration Meeting 2/19 Jana Rieger June 25, 2019 ## What I'm supposed to do - Efficiency and acceptance studies for PANDA Day-1 setup - ▶ Channel: $p p \rightarrow p p \pi^0$ - ▶ Beam momentum (1.5-15) GeV/c - ► Test sample - ▶ BOX generator π^0 s @ 5-15 GeV/c - Isotropic in ϑ and φ - PandaRoot full simulation - Day-1 setup - π^0 decay performed by GEANT 3 - Reconstruction of $\pi^0 \to \gamma \gamma$ #### Motivation π^0 reconstruction efficiency 3/16 ## π^0 Decay - $\blacktriangleright \pi^0$ decay in rest frame - $ightharpoonup \gamma$ s are emitted back to back Figure: π^0 decay in its rest frame. - $\blacktriangleright \pi^0$ decay in lab frame - $ightharpoonup \gamma$ s are boosted forward - ► Hit neighboring/same EMC crystal - Not resolvable with bump splitting algorithm - ► Merged π⁰ ## When does merging occur? ## Where does merging occur? - γ impact separation in ${\rm cm}$ - $ightharpoonup \geq 5.7\,\mathrm{cm}$ (yellow region): No merging ## Analytical reconstruction of merged π^0 #### Moment analysis of clusters - Based on moment analysis of clusters - \triangleright n^{th} moment defined as: $$\langle x^n \rangle = \frac{\sum E_i x_i^n}{\sum E_i} \tag{1}$$ E_i : Digi energy, x_i : Digi position - Sum over digies contributing to cluster - ▶ Simplify calculation: Rotation in $\langle x_0 y_0 \rangle$ co-moment eigenframe Method adapted from: "Photon and Neutral Pion reconstruction", O. Deschamps et. al., LHCb Collaboration, 2003 ## Analytical reconstruction of merged π^0 Rotation in $\langle x_0 y_0 \rangle$ co-moment eigenframe ## Analytical reconstruction of merged π^0 #### Moment analysis of clusters ▶ Relations in the $\langle x_0 y_0 \rangle$ co-moment eigenframe: $$E = E_A + E_B \tag{2}$$ $$\left\langle x^{1}\right\rangle = \frac{x_{A}E_{A} + x_{B}E_{B}}{E} = 0 \tag{3}$$ $$\left\langle x^2 \right\rangle = \frac{x_A^2 E_A + x_B^2 E_B}{E} + \sigma_x^2 \tag{4}$$ $$\left\langle x^3 \right\rangle = \frac{x_A^3 E_A + x_B^3 E_B}{E} \tag{5}$$ Leading to the invariant mass of the cluster $$M_{AB}^{2} = \frac{E^{2}}{r^{2}} \left(\left\langle x^{2} \right\rangle - \left\langle y^{2} \right\rangle \right) \tag{6}$$ Rotated back in the original frame $$M_{AB}^2 = \frac{E^2}{r^2} \frac{\langle x_0^2 \rangle - \langle y_0^2 \rangle}{\cos(2\varphi_0)} \tag{7}$$ ## π^0 Test Sample - ▶ 100000 BOX generator events - ▶ Single π^0 @ 15 GeV/c - Only in barrel EMC - Set option "nomcclean" for pid - \blacktriangleright Do pseudo MC-match if π^0 momentum vector points approx. to cluster centroid ## Invariant Mass Spectrum #### Invariant mass ## Invariant Mass of π^0 ► Fit gaussian + straight line - $\mu = 146$ MeV, $\sigma = 46$ MeV - ▶ Reconstruction of 109078 π^0 s ## **Bump Examples** ▶ Bump from merged π^0 without match, m=0.155 GeV ## **Bump Examples** ▶ Bump from merged π^0 with MC match, m = 0.155 GeV ## **Bump Examples** ▶ Bump from photon, m = 0.053 GeV #### Outlook - ► Include Forward + Backward Spectrometer - ► Include as task in PandaRoot - ▶ Calibration for π^0 mass - Looking for systematics