Reconstruction of merged π^0 in the Barrel EMC PANDA Collaboration Meeting 2/19

Jana Rieger

June 25, 2019

What I'm supposed to do

- Efficiency and acceptance studies for PANDA Day-1 setup
- ▶ Channel: $p p \rightarrow p p \pi^0$
- ▶ Beam momentum (1.5-15) GeV/c
- ► Test sample
 - ▶ BOX generator π^0 s @ 5-15 GeV/c
 - Isotropic in ϑ and φ
 - PandaRoot full simulation
 - Day-1 setup
 - π^0 decay performed by GEANT 3
 - Reconstruction of $\pi^0 \to \gamma \gamma$

Motivation

 π^0 reconstruction efficiency

3/16

π^0 Decay

- $\blacktriangleright \pi^0$ decay in rest frame
 - $ightharpoonup \gamma$ s are emitted back to back

Figure: π^0 decay in its rest frame.

- $\blacktriangleright \pi^0$ decay in lab frame
 - $ightharpoonup \gamma$ s are boosted forward
 - ► Hit neighboring/same EMC crystal
 - Not resolvable with bump splitting algorithm
- ► Merged π⁰

When does merging occur?

Where does merging occur?

- γ impact separation in ${\rm cm}$
 - $ightharpoonup \geq 5.7\,\mathrm{cm}$ (yellow region): No merging

Analytical reconstruction of merged π^0

Moment analysis of clusters

- Based on moment analysis of clusters
- \triangleright n^{th} moment defined as:

$$\langle x^n \rangle = \frac{\sum E_i x_i^n}{\sum E_i} \tag{1}$$

 E_i : Digi energy, x_i : Digi position

- Sum over digies contributing to cluster
- ▶ Simplify calculation: Rotation in $\langle x_0 y_0 \rangle$ co-moment eigenframe

Method adapted from: "Photon and Neutral Pion reconstruction", O. Deschamps et. al., LHCb Collaboration, 2003

Analytical reconstruction of merged π^0

Rotation in $\langle x_0 y_0 \rangle$ co-moment eigenframe

Analytical reconstruction of merged π^0

Moment analysis of clusters

▶ Relations in the $\langle x_0 y_0 \rangle$ co-moment eigenframe:

$$E = E_A + E_B \tag{2}$$

$$\left\langle x^{1}\right\rangle = \frac{x_{A}E_{A} + x_{B}E_{B}}{E} = 0 \tag{3}$$

$$\left\langle x^2 \right\rangle = \frac{x_A^2 E_A + x_B^2 E_B}{E} + \sigma_x^2 \tag{4}$$

$$\left\langle x^3 \right\rangle = \frac{x_A^3 E_A + x_B^3 E_B}{E} \tag{5}$$

Leading to the invariant mass of the cluster

$$M_{AB}^{2} = \frac{E^{2}}{r^{2}} \left(\left\langle x^{2} \right\rangle - \left\langle y^{2} \right\rangle \right) \tag{6}$$

Rotated back in the original frame

$$M_{AB}^2 = \frac{E^2}{r^2} \frac{\langle x_0^2 \rangle - \langle y_0^2 \rangle}{\cos(2\varphi_0)} \tag{7}$$

π^0 Test Sample

- ▶ 100000 BOX generator events
- ▶ Single π^0 @ 15 GeV/c
- Only in barrel EMC
- Set option "nomcclean" for pid
- \blacktriangleright Do pseudo MC-match if π^0 momentum vector points approx. to cluster centroid

Invariant Mass Spectrum

Invariant mass

Invariant Mass of π^0

► Fit gaussian + straight line

- $\mu = 146$ MeV, $\sigma = 46$ MeV
- ▶ Reconstruction of 109078 π^0 s

Bump Examples

▶ Bump from merged π^0 without match, m=0.155 GeV

Bump Examples

▶ Bump from merged π^0 with MC match, m = 0.155 GeV

Bump Examples

▶ Bump from photon, m = 0.053 GeV

Outlook

- ► Include Forward + Backward Spectrometer
- ► Include as task in PandaRoot
- ▶ Calibration for π^0 mass
- Looking for systematics