Benchmarking of P_z reconstruction in the STT

Walter Ikegami Andersson

 $\overline{\mathsf{P}}\mathsf{ANDA}$ Collaboration Meeting June 24-28, 2019

Outline

- Recap on Pz recontruction algorithm
- New method: Recursive Annealing Fit
- Efficiency and Resolution
- Outlook

The PANDA Straw Tube Tracker

STT specifications			
Total straws	4224		
Axial layers	15-19		
Stereo layers	8		
Stereo angle	\pm 2.9 deg		

Numbers taken from STT design report

Isochrone radius

Radial distance from track to wire

Figure: Cross sectional view of STT
Green - parallel straw
Red, blue - skewed straw

Tracking algorithm dedicated for STT

Track reconstruction algorithm using only STT. (J. Schumann, Forschungszentrum Jülich)

- Cluster hits in parallel straws into tracklets (neighboring relations)
- Riemann fit using isochrone corrected hits
- Assign skewed straw hits to track

Output: Riemann track object for each track, containing circle fit in *xy*-plane

Must include skewed straws to reconstruct p_z

Longitudinal position from skewed straws

Longitudinal position from skewed straws

Longitudinal position from skewed straws

The method:

- Extract isochrone radius in skewed straw
- Center of isochrone gives z-position
- Generate all possible isochrone positions
- Calculate (z, ϕ)

Ambiguity: Each straw gives two possible (z, ϕ)

Solve ambiguity

Develop algorithms to find true collinear (z, ϕ) hits

The method:

- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines
- $\textbf{ 9} \ \, \mathsf{Parameters} \to \mathsf{accumulator} \\ \mathsf{space} \\$
- Repeat for all points
- \odot Voting procedure \rightarrow true line

True line found in maximum!

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- **3** Ignore paths where $\theta < 90^{\circ}$ \rightarrow reduces number of combinations
- Choose path with $min(\sum \theta_i 180^\circ)$

Hits in final path chosen as true hits

Skewed hits position in Z-ф

Method 3: Recursive Annealing Fit

The strategy:

- Fit a line to all (S, z) hits (MVD and STT)
- Remove (S, z) hit (only skewed STT) with largest z residual
- Make a new line fit
- Repeat until one (S, z) hit has been rejected in every skewed straw

Benchmarking: Quantities

Two quantities studied in the benchmarking:

- p_I resolution
 Done with the TrackingQA task of PandaRoot
- (S, z) selection efficiency

Benchmarking: Quantities

Two quantities studied in the benchmarking:

- p_I resolution
 Done with the TrackingQA task of PandaRoot
- (S, z) selection efficiency

Custom QA task developed for this purpose:

- For each skewed STT hit, get MC point
- Transform MC point from (x, y, z) to (S, z)
- Compare (S, z) (red) from alignment with MC point (green)
- Red point closest to MC point considered true

Benchmarking: Samples

The data samples used for benchmarked are the following:

- Two DPM samples generated at 2 GeV/c and 15 GeV/c
- At 2 GeV/c, solenoid field strength at 1 T

	DPM @ 2.0 GeV/c	DPM @ 15.0 GeV/c
Events	1000	1000
MC tracks	2339	2832

- Both Primary Track Finder and SttCellTrackFinder used to provide prefit tracks
- Primary Track Finder study performance including MVD hits
- SttCellTrackFinder study performance of local STT tracking

Benchmarking: Efficiency

	Combi. Path Finder		Hough Transform		Rec. Ann. Fit	
p _t method	Primary	SttCell	Primary	SttCell	Primary	SttCell
DPM @ 2.0 GeV/c	80.2	84.3	66.3	83.9	93.7	92.4
DPM @ 15 GeV/c	78.1	83.3	66.0	82.0	91.7	91.0

- \bullet Combinatorial Path Finder and Hough Transform have similar efficiencies $\sim 80\%$
- Low efficiency when using the Hough Transform with Primary Track Finder
- Recursive Annealing Fit highest efficiency with > 90%

Benchmarking: Resolution

Resolution obtained from standard TrackingQA task:

- Calculate relative p_l error distribution
- Take FWHM as resolution parameter

	Combi. Path Finder		Hough Transform		Rec. Ann. Fit	
p_t method	Primary	SttCell	Primary	SttCell	Primary	SttCell
DPM @ 2.0 GeV/c			0.140	0.280	0.176	0.188
DPM @ 15 GeV/c	0.096	0.132	0.096	0.128	0.080	0.112

- Again Recursive Annealing Fit has best resolution, mostly
- For 2 GeV/c using Primary Track Finder, Hough Transform has best resolution.

The same sample has the lowest efficiency

Summary and Outlook

- Three algorithms to solve left-right ambiguity in STT skewed straws have been developed
 - Combinatorial path finding
 - Hough Transform
 - Recursive Annealing Fit
- The Recursive Annealing Fit found to have highest efficiency
- Hough Transform found to have best p₁ resolution at 2.0 GeV/c when MVD hits are included
- Recursive Annealing Fit could be extended to reject fake MVD hits as well

Summary and Outlook

- Three algorithms to solve left-right ambiguity in STT skewed straws have been developed
 - Combinatorial path finding
 - Hough Transform
 - Recursive Annealing Fit
- The Recursive Annealing Fit found to have highest efficiency
- Hough Transform found to have best p_I resolution at 2.0 GeV/c when MVD hits are included
- Recursive Annealing Fit could be extended to reject fake MVD hits as well

Thank you for your attention!

Backup

Find geometric shapes in images.

- Helix trajectory \rightarrow straight line in $z-\phi$ space
- Line parameters in *xy*-plane, slope *k* and intercept *m*

-
$$y(x) = kx + m$$

Problem: The intercept parameter *m* unbound

Hesse normal form

$$r = x \cos \theta + y \sin \theta$$
$$y = \left(-\frac{\cos \theta}{\sin \theta}\right) x + \left(\frac{r}{\sin \theta}\right)$$

Figure: Blue line perpendicular to red line and crosses the origin

The method:

- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines

- **1** Isochrone centers in $z \phi$ space
- Generate set of all lines
- $\begin{array}{c} \textbf{3} \ \, \mathsf{Parameters} \to \mathsf{accumulator} \\ \mathsf{space} \end{array}$

- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines
- $\textbf{ 9} \ \, \mathsf{Parameters} \to \mathsf{accumulator} \\ \mathsf{space} \\$
- Repeat for all points

- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines
- $\textbf{ 9} \ \, \mathsf{Parameters} \to \mathsf{accumulator} \\ \mathsf{space} \\$
- Repeat for all points

The method:

- **1** Isochrone centers in $z \phi$ space
- @ Generate set of all lines
- $\textbf{ 9} \ \, \mathsf{Parameters} \to \mathsf{accumulator} \\ \mathsf{space} \\$
- Repeat for all points
- $oldsymbol{0}$ Voting procedure ightarrow true line

True line found in maximum!

Method 1: Hough transform - our track

Figure: 360 lines generated for each data point in steps of 1 $^{\circ}$ in heta

Method 1: Extracting helix angle

The method:

- Calculate point of closest approach (POCA) from hits to true line
- 2 Accept hit with smallest POCA
- **3** Straight line fit with selected (z, ϕ) coordinates

Finish

The slope of the fitted line yields the helix angle. z_0 and p_z can now be extracted!

The method:

• Calculate all lines between (z, ϕ) points in neighboring skewed straws

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-ф

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- **3** Ignore paths where $\theta < 90^{\circ}$ \rightarrow reduces number of combinations

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- **3** Ignore paths where $\theta < 90^{\circ}$ \rightarrow reduces number of combinations

The method:

- Calculate all lines between (z, ϕ) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- **3** Ignore paths where $\theta < 90^{\circ}$ \rightarrow reduces number of combinations
- Choose path with $min(\sum \theta_i 180^\circ)$

Hits in final path chosen as true hits

PzFinder - Code structure

- PndSttSkewStrawPzFinderTask.cxx
 - PndTrack Standard PANDA track object
 - PndTrackCand PndSttHits belonging to track
 - PndRiemannTrack Riemann circle parameters to track
- PndSttSkewStrawPzFinder.cxx
 - MoveSkewedHitstoCircle
 - Calculates all possible (z,ϕ) in skewed straw
 - HoughTruelsoFinder
 - Fills accumulator space, find maximum, rejects fake hits with POCA
 - LineCombilsoFinder
 - Generates lines, calculates angles, find best path
 - PzLineFitExtract
 - Simple line fit to true (z,ϕ) hits and extracts helix angle