Track Finding Using a Language Model

Jakapat Kannika Forschungszentrum Jülich

^{*}Our current work is focusing on these problems on the STT.

How to find a track from continuous hits in the presence of noise?

Language Models

Example: Next word prediction

"I am Sam"
"Sam I am"
"I do not like green eggs and ham"

Sources:

- [1] http://www.androidpolice.com
- [2] http://gocall.com

```
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>
```

Unigram Model

Word	Count
<s></s>	3
1	3
am	2
	3
Sam	2
do	1

Word	Count
not	1
like	1
green	1
eggs	1
and	1
ham	1

Bigram Model

Word	Count
<g> </g>	2
I am	2
am Sam	1
Sam	1
<s> Sam</s>	1
Sam I	1
am	1
<g> </g>	1

Word	Count
I do	1
do not	1
not like	1
like green	1
green eggs	1
eggs and	1
and ham	1
Ham	1

Finding a probability distribution of the bigram model

Word	Prob.
P(<s> I)</s>	2/3 = 0.67
P(am I)	2/3 = 0.67
P(Sam am)	1/2 = 0.5
P(Sam)	1/2 = 0.5
P(Sam <s>)</s>	1/3 = 0.33
P(I Sam)	1/2 = 0.5
P(am)	1/2 = 0.5
P(I <s>)</s>	1/3 = 0.33

Word	Prob.
P(do I)	1/3 = 0.33
P(not do)	1/1 = 1
P(like not)	1/1 = 1
P(green like)	1/1 = 1
P(eggs green)	1/1 = 1
P(and eggs)	1/1 = 1
P(ham and)	1/1 = 1
P(Ham)	1/1 = 1

What is the next word after 'I'?

```
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>
```

Word	Prob.
P(am I)	0.67
P(do I)	0.33

How can we apply the language models to the track finding task?

(x, y) information:

Features:

- neighbor pattern,
- moving direction.

Neighbor Pattern Feature

- 66 is a neighbor pattern id.
- There are 255
 patterns
 (excluding one
 that has zero
 neighbor point).

Neighbor pattern tokens:

32 66 36 66 36 66 36 6

Moving Direction Feature

Moving direction tokens:

90 45 90 45 90 45 90 45 90

Training Language Models and Tracking Results

Training language models

Neighbor pattern feature:

- Bigram,
- 1-skip-bigram,
- 2-skip-bigram.

Moving direction feature:

- 5-gram,
- 10-gram,
- 15-gram.

Toy data generators:

- Straight line generator,
- Noise generator.

Skip-gram models for neighbor pattern feature

Results: Neighbor Pattern Feature

Track finding using the neighbor pattern feature

GREEN: correct predicted hit, RED: incorrect predicted hit, BLUE: missed correct hit

Results: Moving Direction Feature

Track finding using the moving direction feature (1)

Feature: moving direction, lang model: 15-gram, noise: 20%

Track finding using the moving direction feature (2)

Feature: moving direction, lang model: 15-gram, noise: 50%

Conclusions

- Neighbor pattern and moving direction are potential features for the track finding task,
- 2-skip-n-gram is the most suitable model for the neighbor pattern tracking,
- Lack of direction information in the neighbor pattern feature causes many cases of incorrect prediction.
- Moving direction feature requires a high order ngram model for accurate hit predictions,
- Some long dependency pattern recognition issues cannot be solved by the neighbor pattern or moving direction features.

Outlook

- Implement language models using artificial neural network,
- Study correlation between neighbor pattern and moving direction features,
- Test the models with a curved line,
- Include the isochrone radius information as a feature of the tracking model.

P(You | Thank)