Track Finding Using
 a Language Model
 Jakapat Kannika
 Forschungszentrum Jülich

What makes track finding difficult?

How to find a track from continuous hits in the presence of noise?

Language Models

Example: Next word prediction

"I am Sam"
"Sam lam"
"I do not like green eggs and ham"

[2] http://qocall.com

Unigram Model

Word	Count
<s>	3
I	3
am	2
<s>	3
Sam	2
do	1

Word	Count
not	1
like	1
green	1
eggs	1
and	1
ham	1

Frequency distribution for a unigram model

```
<s> I: 1 I am: 2
    <s> 1 am Sam </s>
    <s> Sam lam </s>
    <s> I do not like green eggs and ham </s>
```


Bigram Model

Word	Count
<s> I	2
I am	2
am Sam	1
Sam </s>	1
<s> Sam	1
Sam I	1
am </s>	1
<s> I	1

Word	Count
I do	1
do not	1
not like	1
like green	1
green eggs	1
eggs and	1
and ham	1
Ham </s>	1

Finding a probability distribution of the bigram model

$$
\begin{array}{ll}
P\left(w_{n} \mid w_{n-1}\right)=C\left(w_{n-1} w_{n}\right) / \\
C\left(w_{n-1}\right) & \\
\text { Bigram count for } & \text { Unigram count } \\
\text { lowed by } w_{n-1} & \text { the word } w_{n-1} w_{n} \quad \text { for the word } w_{n-1}
\end{array}
$$

Probability of which $\mathrm{w}_{\mathrm{n}-1}$ could be followed by w_{n}

Word	Prob.
$P(<s>\mid I)$	$2 / 3=0.67$
$P(a m \mid I)$	$2 / 3=0.67$
$P($ Sam \| am $)$	$1 / 2=0.5$
$P(</ s>\mid$ Sam $)$	$1 / 2=0.5$
$P($ Sam \| <s $>)$	$1 / 3=0.33$
$P(I \mid$ Sam $)$	$1 / 2=0.5$
$P(</ s>\mid a m)$	$1 / 2=0.5$
$P(I \mid<s>)$	$1 / 3=0.33$

Word	Prob.
P (do\| I)	$1 / 3=0.33$
P (not \| do)	$1 / 1=1$
P (like \| not)	$1 / 1=1$
P (green \| like)	$1 / 1=1$
P (eggs \| green)	$1 / 1=1$
P (and \| eggs)	$1 / 1=1$
P (ham \| and)	$1 / 1=1$
P (</s> \| Ham)	$1 / 1=1$

What is the next word after 'l'?

<s 1 am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Word	Prob.
$P(a m \mid I)$	0.67
$P($ do \mid I $)$	0.33

How can we apply the language models to the track finding task?

Neighbor Pattern Feature

Neighbor pattern tokens:
3266366636663666362

Moving Direction Feature

Moving direction tokens:
904590459045904590

Training Language Models and
 Tracking Results

Training language models

Neighbor pattern feature:

- Bigram,
- 1-skip-bigram,
- 2-skip-bigram.

Moving direction feature:

- 5-gram,
- 10-gram,
- 15-gram.

Toy data generators:

- Straight line generator,
- Noise generator.

Bigram

1-skip-bigram

Skip-gram models for neighbor pattern feature

Results: Neighbor Pattern Feature

Track finding using the neighbor pattern feature

GREEN: correct predicted hit, RED: incorrect predicted hit, BLUE: missed correct hit

Track purity comparison of different language models
used in the neighbor pattern tracking

Results: Moving Direction Feature

Track finding using the moving direction feature (1)

Track finding using the moving direction feature (2)

Track purity comparison of different language models
used in the moving direction tracking

Conclusions

- Neighbor pattern and moving direction are potential features for the track finding task,
- 2-skip-n-gram is the most suitable model for the neighbor pattern tracking,
- Lack of direction information in the neighbor pattern feature causes many cases of incorrect prediction.
- Moving direction feature requires a high order ngram model for accurate hit predictions,
- Some long dependency pattern recognition issues cannot be solved by the neighbor pattern or moving direction features.

Outlook

- Implement language models using artificial neural network,
- Study correlation between neighbor pattern and moving direction features,
- Test the models with a curved line,
- Include the isochrone radius information as a feature of the tracking model.

P(You | Thank)

