A PANDA TRACK FINDING ALGORITHM BASED ON THE APOLLONIUS PROBLEM

25.06.2019 I ANNA SCHOLL

INTRODUCTION

- Focussing on barrel part of the detector
- Use hits from MVD, STT, GEM detector
- Track passes through MVD and GEM hit points
- Track is tangent to STT isochrones

interaction point (IP)

Track is tangent to the isochrone

Track is tangent to the isochrone

→ First idea: **Hough transformation**

- Separate dimensions
 - 3D helix (R, φ , z) \rightarrow 2D circle (R, φ) + line (z)
- Apply Hough transform to detect tracks in a set of hits
 - For each hit, generate all possible tracks compatible with it (Circles in xy plane, passing through IP and are tangent to the isochrone)
 - Collect generated track parameters for all hits (2D Hough Space)
 - Count: most frequent values = parameters of actual tracks

- Track is tangent to the isochrone
- → First idea: Hough transformation
- Separate dimensions
 - 3D helix (R, φ , z) \rightarrow 2D circle (R, φ) + line (z)
- Apply Hough transform to detect tracks in a set of hits
 - For each hit, generate all possible tracks compatible with it (Circles in xy plane, passing through IP and are tangent to the isochrone)
 - → Problem: a lot of false combinations for increasing number of tracks per event
 - Collect generated track parameters for all hits (2D Hough Space)
 - Count: most frequent values = parameters of actual tracks

- Track is tangent to the isochrone
- → First idea: **Hough transformation**
- Separate dimensions
 - 3D helix (R, φ , z) \rightarrow 2D circle (R, φ) + line (z)
- Apply Hough transform to detect tracks in a set of hits
 - Problem: a lot of false combinations for increasing number of tracks per event
 - Idea: reduce combinatrics by using 2 Isochrones and IP
 - → problem of Apollonius

General Apollonius problem for 3 circles:
Find circles that are tangent to three given circles in a plane

General Apollonius problem for 3 circles:
Find circles that are tangent to three given circles in a plane

For each circle there are 2 possibilities for an Apollonius circle

1.
$$r_{Apollonius} = r_{center} + r_i$$

General Apollonius problem for 3 circles:
Find circles that are tangent to three given circles in a plane

For each circle there are 2 possibilities for an Apollonius circle

- 1. $r_{Apollonius} = r_{center} + r_i$
- 2. $r_{Apollonius} = r_{center} r_i$

General Apollonius problem for 3 circles:
Find circles that are tangent to three given circles in a plane

For each circle there are 2 possibilities for an Apollonius circle

- 1. $r_{Apollonius} = r_{center} + r_i$
- 2. $r_{Apollonius} = r_{center} r_i$

General Apollonius problem for 3 circles:
Find circles that are tangent to three given circles in a plane

For each circle there are 2 possibilities for an Apollonius circle

- 1. $r_{Apollonius} = r_{center} + r_i$
- 2. $r_{Apollonius} = r_{center} r_i$

In total $2^3 = 8$ Apollonius circles

Special case: two circles and one point

For each circle there are 2 possibilities for an Apollonius circle

- 1. $r_{Apollonius} = r_{center} + r_i$
- 2. $r_{Apollonius} = r_{center} r_i$

In total $2^2 = 4$ Apollonius circles

HOUGH TRANSFORMATION BASED ON APOLLONIUS PROBLEM

Implemetation in PandaRoot and testing with simulated data

Example for one Track

Works quiet well if track candidate is known (IdealTrackFinder)

HOUGH TRANSFORMATION BASED ON APOLLONIUS PROBLEM

Implementation in PandaRoot and testing with simulated data

Example for one Event

- Works quiet well if track candidate is known (IdealTrackFinder)
- For one event (many tracks): high combinatorics with (still) many false combinations

PRESELECTION

- In reality track candidates are not known
- Using Apollonius transform for all tracks in one event is very time consuming and leads to a lot of false combinations
- preselection for possible tracklets is needed

- Idea:
 - preselection by cutting on φ -plane: dividing x-y-plane dynamicly in sectors

Seite 8

Filling φ -values of all hits into histogram:

• Filling φ -values of all hits into histogram:

• Divide in φ - sectors

• Filling φ -values of all hits into histogram:

Divide in φ - sectors

Filling φ -values of all hits into histogram:

Divide in φ - sectors

• Filling φ -values of all hits into a histogram:

- Divide in φ sectors
- Hough transformation for all hits in one sector

 Filling φ-values of all hits into a histogram:

- Divide in φ sectors
- Hough transformation for all hits in one sector
- Could be problematic for low p_T -Tracks

CONCLUSION

- Implementation of Hough transformation based on the Apollonius problem in PandaRoot
- Testing with single tracks found by the Ideal Track Finder
- High combinatorics for many tracks per events
- Idea for preselection of track candidates:
 - Cut on φ plane

Seite 10