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Motivation

Testing the method from FTS to STT

Indentify possible issues

@ Dense Networks as Seeder
e Seeder to a track builder algorithm (LSTM)
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PANDA Experiment
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___________________________
Straw Tube Tracker (STT)

~ 4224 straws planned

e 15 - 19 axial layers (green) /4
@ 8 stereo layers (£2.9°) (red %g
and blue) i
s
e internal radius: 15 cm G
o external radius: 42 cm i f
lsteesi

@ length of tubes: 150 ¢cm \
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Track Reconstruction

Common approach in High Energy Physics:

e Track finding

- Input: Particle Hits
- Algorithm: e.g. Cellular Automaton, Hough Transform etc.
- Output: Track Candidates

e Track fitting

- Input: Track Candidates
- Algorithm: e.g. Kalman Filter, Helix Fit etc.
- Output: Track Kinematics
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___________________________
Track Reconstruction (ML)

. Track Finding
There are many open questions
that how ML should be applied in —
tracking process (Fig.). L+ Hit Clustering

@ One way is to apply ML in
stages e.g. clustering, seeding > Track Seeding
and track building.

= Track Building

@ The other way is to use ML in
end-to-end manner e.g. track
finding as a whole.

Track Fitting
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___________________________
Learning Types (ML)

It is the ability of machines to learn complex representations of data
through learning. Learning approaches are;

e Supervised Learning
- Classification, Regression

o Unsupervised Learning
- Clustering, Density Measurements

e Reinforcement Learning
- Robotics etc
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___________________________
Deep Learning (ML)

It’s an approach to introduce
hidden layers in a model more
generally deep neural networks:

@ Dense Netowks
@ Recurrent Networks

o Convolutional Networks

=-Supervised Deep Learning
=Dense Networks
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Dense Neural Networks

l=1,2,...,L
H = output vector of layer [
W = weight matrix

b = bias vector

a = activation function

9 = final prediction
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|
Erorr Backpropagation

Cross-entropy cost function (J):

m

J(@,y) = —-1/m Y _[§" log(y) + (1 — §*)) log(1 — y))]
i=1

Gradient descent (epoch = 1 execution cycle):
awlll = /0wl
dv!! = 8.7 /0p"
Parameter update with learning rate («a):

wlil .= wll — o qwll
.= pll — . dpl!
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Data Generation

The data is generated with PandaRoot using the Box Generator.
e 1000 events
e Momentum range 3 — 7 GeV/c
e Polar angle 5° - 90°

e Five muons per event
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Training the Neural Network

Hit-pairs (hit position) as input features and labels (0 or 1) as an
output.

Features (X) Labels (y)
(i, yi) (@5, y5) 0/1

Roughly, 11 million hit-pairs are trained on Neural Network.
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Neural Network Performance
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___________________________
Track Building (Algorithm)

Algorithm for building the track from this approach is as follows:

o Get probability of hit pairs from Neural Network

o If prob (h;, hj) > 0.5 and prob (hj, hy) > 0.5 then h;, hj, hy, are on
the same track
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___________________________
Reconstructed Event (Full)
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Issues/Solutions

This method has some issues;
e Difficulty separating close tracks

o Even more difficult if two track cross each other

Possible solutions can be;
e Azimuthal angle between track segments
o Train on hit triplets rather than pairs

e Hit inclusion from the adjacent layers only
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___________________________
Reconstructed Event (Before Skewed)
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___________________________
Reconstructed Event (After Skewed)
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Track Segment Joining

Two track segements can be joined together into a single track using a
recurrent neural network (not done yet)

But, same algorithm can be used for different tracking task.
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___________________________
Track Extrapolation (Main)

This algorithm can used as stand-alone algorithm to build track
segments or as track seeding.

Track Seeding:
o Build seed using hit pairs/triplets

@ Dense Network

Track Building:
e Extrapolate SEEDS to form tracks (similar to Kalman Filter)
o LSTM (same layer prediction)/LSTM (next layer prediction)
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Summary

o TrackML style approach
e Algorithm is adapted from FTS (Waleed Esmail) to STT

e Track segments in different parts of detector can be joined together
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Future Plans

o Introducing azimuthal angle between track segments
o OR rather than hit-pairs, train on hit-triplets

e A Minimalist version to build track SEEDS

SEEDER (Dense) to Track Builder (LSTM) algorithm
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(Questions?
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Backup Slides
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Cross-entropy Loss Function

Log Loss when true label = 1

10 — T

log loss

1 1
0.0 0.2 0.4 0.6 0.8 1.0
predicted probability
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|
Track Extrapolation

Recurrent networks are used to track extrapolation from track seeds:

Track Seeding:
o Build seed using hit pairs/triplets

@ Dense Networks

Track Building:
e Extrapolate seeds to form tracks (similar to CKF)
e LSTM + FC (Softmax)
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N
Hit Predictor Model

Recurrent networks are used as forward hit predictor model (sequence
predition)

e hit prediction (tracks as sequence of hits), temporal component

e Next layer (forward) hit prediction

e LSTM + FC (Sigmoid)
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Prediction

Whole execution of a Neural Network is reduced to minimization of
Cost Function (J).

J(g,y) =0 given o, W,b

After all epochs, our model is ready to predict using a threshold (7).

Yprediction = :
preduction 0, otherwise

0 B {1, §@ > 7
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___________________________
RNNs (Application)

RNNs are sequential models to handle data with a temporal
component. For example, audio data, DNA sequencing, speech
recognition, machine translation etc. Particle tracks can be seen as

Sequence data, a RNN (LSTM) can be used just like Combinatorial
Kalman Filter (CKF). However, we need track seeds to build tracks.
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___________________________
RNNs (Issues)

Vanishing gradient due to backpropagation and in gradient-based
learning models.

e More layers, gradient of loss function approaches zero
o Hinder the learning ability of network

e Earlier layers learn less than the later ones

RNNSs is sequential, so prediction have higher contribution from the last
layer. We can think of current state of node as a memory unit.
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