Cherenkov angle reconstruction

Roland Hohler
for the GSI PANDA barrel DIRC Group
GSI, Darmstadt
Goethe University Frankfurt

PANDA Collaboration Meeting
March 8-12, 2010 at GSI

Outline

- Cherenkov angle reconstruction via BaBar ("kBar") method
- Pixel \& bar information (position, time)
- Look-up table (kBar map)
- Particle track
$\Rightarrow \theta_{c}$
- This method could be a candidate for the PANDA reconstruction (see Dipanwita's talk in the Computing Session)
- Only beamtest simulation are used
- 400 nm (Cherenkov photons)
- [300, 700] nm

kBar vector

kBar vector: - photon direction at production

- unit vector in bar coordinate system
particle direction \& k Bar vector $=>\Theta_{c}$
(known) (unknown)
=> determine unique kBar vector for each detector pixel

kBar vector production

generate kBar vectors => kBar map on detector plane

kBar map

Beamtest setup:

- 2*107 photons hit the detector plane
- averaged kBar component for each pixel kBarY_direct

kBarX direct

Ambiguities

```
pixel hit => possible ambiguities => more than 1 solution
```

Example: pixel: (kBarX, 0, kBarZ) from kBar map
left/right, back/forward = > 2*2 = 4 solutions

Solution elimination:

- Symmetry: $\theta_{1}=180^{\circ}-\theta_{4} \& \theta_{2}=180^{\circ}-\theta_{3} \Rightarrow \theta<90^{\circ}$
- Time: can resolves back/forward ambiguity ($\theta_{2}>90^{\circ}$)
- Physics: Cherenkov angle e.g. $\theta_{c}(300 \mathrm{~nm})=47.8^{\circ}$

Additional kBar solutions in the box

left/right, back/forward, up/down, box(direct, left/right, up/down) = > 2*2*2*2 = 16 solutions (max.)

kBarX_right
blackened

Ideal Cherenkov angle resolution (400nm)

 simulation: - protons with $\mathrm{T}=2 \mathrm{GeV}$ \& $\theta=30^{\circ} \& \varphi=0^{\circ}$ (track in $x-z$ plane)- box walls are blackened (top/bottom, left/right)
use true kBar-vectors $=>$ no pixel effect no box ambiguity $=>8$ solutions
$\varphi=0^{\circ}$ => same θ_{c} for up/down ambiguity

=> 4 solutions remain

Ideal Cherenkov angle resolution (300-700nm)

True Cherenkov angle

True Cherenkov angle

dispersion (300-700 nm)

=> 4.9 mrad contribution
to the Cherenkov angle resolution

Angle resolution with pixelization (400nm)

- pixel size: 6.375 mm (MCP-PMT pixel)
- same size for the kBar map

- w/o pixel effect => single bin
expected: $\quad \sigma_{\text {pixel }}=\frac{6.375 \mathrm{~mm}}{\sqrt{12}}$

$$
\sigma=\frac{\sigma_{\text {pixel }}}{200 \mathrm{~mm}}=9.2 \mathrm{mrad}
$$

MCP-PMT pixelization + lens error => 9.9 mrad resolution lens error contribution: 3.7 mrad

Angle resolution with pixelization (300-700nm)

expected:
$\underbrace{\text { MCP pixelization + lens }}_{9.9 \mathrm{mrad}}+\underbrace{\text { dispersion }}_{4.9 \mathrm{mrad}}$ => 11.0 mrad resolution

Conclusion \& outlook

- First test of the kBar reconstruction method with beamtest simulation was successful
- kBar method useful as a performance check (Cherenkov angle resolution)
- In future apply method to real beamtest data

