TOF-based PID for PANDA Forward Spectrometer

> A. Kiselev, <u>Yu. Naryshkin</u> PNPI, St. Petersburg

A. Kiselev, Yu. Naryshkin, PANDA Collaboration meeting, GSI 8-12 March 2010

Mass reconstruction with T₀ (start) measurement

- Each track considered individually (track-level PID)
- Monte-Carlo T₀(start) was used without smearing

TOF resolution 100 ps

Effective π/K separation up to 3 GeV/c, K/p separation up to 4 GeV/c

ToF-based event-level PID formalism for PANDA

 \rightarrow No T_0 (start) measurement is required!

- Quantify as much as possible pion/kaon/proton separation
- Work the same way for barrel/side/forward ToF detectors
- Account properly for ToF and tracking uncertainties

ToF-based event-level PID formalism for PANDA

 \rightarrow No T_0 (start) measurement is required!

- Quantify as much as possible pion/kaon/proton separation
- Work the same way for barrel/side/forward ToF detectors
- Account properly for ToF and tracking uncertainties

This talk \rightarrow a simplified (introductory) version:

- pion/proton separation
- Monte-Carlo with forward ToF detector only
- tracking uncertainties accounted in a simple (yet correct!) way

Proton-pion separation with Forward ToF Wall

Consider N-track event $\rightarrow 2^{N}$ particle mass configurations {m₁,...,m_N}, for each of them start timing offset (t_S⁰) can be easily calculated:

$$\Psi(t_{S}) = \sum_{i=1}^{N} \frac{(t_{i}^{REC} - t_{i}^{TOF} - t_{S})^{2}}{(\sigma_{i}^{TOF})^{2} + (\sigma_{i}^{REC})^{2}}, \frac{d\Psi}{dt_{S}} = 0 \rightarrow t_{S}^{0}, \chi^{2}_{0} \equiv \Psi(t_{S}^{0})$$
$$t_{i}^{REC} = \sqrt{p_{i}^{2} + m_{i}^{2}} / (p_{i}c), (\sigma_{i}^{REC})^{2} = (\frac{\partial t^{REC}}{\partial L} \sigma_{L})^{2} + (\frac{\partial t^{REC}}{\partial p} \sigma_{p})^{2}$$

This gives a "weight" for each of $\{m_1, ..., m_N\}$ configurations: $\omega_{\{m_1, ..., m_N\}} = PROB(\chi_0^2, N-1)$

Then probability for j-th track to be a pion (proton) can be defined as

$$\varepsilon_{\pi}^{j} = \sum_{\{j\}=\pi} \omega_{i} / \sum_{i=1}^{2^{N}} \omega_{i} \qquad \varepsilon_{p}^{j} = \sum_{\{j\}=p} \omega_{i} / \sum_{i=1}^{2^{N}} \omega_{i}$$

Path length uncertainty, few mm \rightarrow small effect \rightarrow Momentum resolution on the level 0.2% (TDR) \rightarrow small effect 5

A. Kiselev, Yu. Naryshkin, PANDA Collaboration meeting, GSI 8-12 March 2010

Proton-pion separation vs TOF resolution

No fluxes are taken into count

Proton-pion separation in momentum bins

 σ_{TOF} = 100 ps

No fluxes are taken into count

A. Kiselev, Yu. Naryshkin, PANDA Collaboration meeting, GSI 8-12 March 2010

Outlook

- Check algorithm for kaon separation
- Justify the algorithm within PANDAROOT framework, including track reconstruction
- Include side TOF walls and barrel TOF
- Prepare PANDA internal note

Monte-Carlo p_{beam}=15 Гэв/с

