TOF-based PID for PANDA Forward Spectrometer

A. Kiselev, Yu. Naryshkin PNPI, St. Petersburg

Top view of PANDA detector

- forward scintillation wall $140 \times 5 \times 2.5 \mathrm{~cm}^{3}, 20$ strips, $140 \times 10 \times 2.5 \mathrm{~cm}^{3}, 46$ strips
- two side walls, inside the dipole magnet $100 \times 10 \times 2.5 \mathrm{~cm}^{3}, 5$ strips each
made of plastic scintillator BC408 time resolution of TOF $\leq 100 \mathrm{ps}$

Mass reconstruction with T_{0} (start) measurement

Each track considered individually (track-level PID)

- Monte-Carlo T_{0} (start) was used without smearing

$$
\text { TOF resolution } 100 \text { ps }
$$

$$
m=p \sqrt{\frac{t^{2} c^{2}}{L^{2}}-1}
$$

Effective π / K separation up to $3 \mathrm{GeV} / \mathrm{c}, \mathrm{K} / \mathrm{p}$ separation up to $4 \mathrm{GeV} / \mathrm{c}$

ToF-based event-level PID formalism for PANDA

\rightarrow No T_{0} (start) measurement is required!

- Quantify as much as possible pion/kaon/proton separation

Work the same way for barrel/side/forward ToF detectors

- Account properly for ToF and tracking uncertainties

ToF-based event-level PID formalism for PANDA

\rightarrow No T_{0} (start) measurement is required!

- Quantify as much as possible pion/kaon/proton separation

Work the same way for barrel/side/forward ToF detectors

- Account properly for ToF and tracking uncertainties

This talk \rightarrow a simplified (introductory) version:

- pion/proton separation
(Monte-Carlo with forward ToF detector only
tracking uncertainties accounted in a simple (yet correct!) way

Proton-pion separation with Forward ToF Wall

Consider N -track event $\rightarrow 2^{\mathrm{N}}$ particle mass configurations $\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{N}}\right\}$, for each of them start timing offset ($\mathrm{t}_{\mathrm{s}}{ }^{0}$) can be easily calculated:

$$
\begin{aligned}
\Psi\left(t_{S}\right) & =\sum_{i=1}^{N} \frac{\left(t_{i}^{R E C}-t_{i}^{T O F}-t_{S}\right)^{2}}{\left(\sigma_{i}^{\text {TOF }}\right)^{2}+\left(\sigma_{i}^{R E C}\right)^{2}}, \frac{d \Psi}{d t_{S}}=0 \rightarrow t_{S}{ }^{0}, \chi^{2}{ }_{0} \equiv \Psi\left(t_{S}{ }^{0}\right) \\
t_{i}^{R E C} & =\sqrt{p_{i}^{2}+m_{i}^{2}} /\left(p_{i} c\right),\left(\sigma_{i}^{\text {REC }}\right)^{2}=\left(\frac{\partial t^{R E C}}{\partial L} \sigma_{L}\right)^{2}+\left(\frac{\partial t^{R E C}}{\partial p} \sigma_{p}\right)^{2}
\end{aligned}
$$

This gives a "weight" for each of $\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{N}\right\}$ configurations: $\omega_{\left\{m_{1}, \ldots, m_{N}\right\}}=\operatorname{PROB}\left(\chi_{0}^{2}, N-1\right)$
Then probability for j-th track to be a pion (proton) can be defined as

$$
\varepsilon_{\pi}^{j}=\sum_{\{j\}=\pi} \omega_{i} / \sum_{i=1}^{2^{N}} \omega_{i} \quad \varepsilon_{p}^{j}=\sum_{\{j\}=p} \omega_{i} / \sum_{i=1}^{2^{N}} \omega_{i}
$$

- Path length uncertainty, few mm
- Momentum resolution on the level $0.2 \%(T D R) \rightarrow$ small effect ${ }_{5}$

MC simulation

PYTHIA6 \rightarrow GEANT3 \rightarrow PID program

$$
P_{\text {beam }}=10 \mathrm{GeV}
$$

We select the events with $n_{\text {tracks }}=2,3,4$

$$
\varepsilon_{\pi}^{j}=\sum_{\{j\}=\pi} \omega_{i} / \sum_{i=1}^{2^{N}} \omega_{i}
$$

Proton-pion separation vs TOF resolution

No fluxes are taken into count

Proton-pion separation in momentum bins

No fluxes are taken into count

Outlook

- Check algorithm for kaon separation
- Justify the algorithm within PANDAROOT framework, including track reconstruction
- Include side TOF walls and barrel TOF
- Prepare PANDA internal note

Monte-Carlo $p_{\text {beam }}=15$ Гэв/c

PYTHIA
DPM

$\bar{p} p \rightarrow \bar{p} X \quad$ elastic scattering \bar{p}

