Front-end electronics of the CBM Silicon Tracking System

Osnan Maragoto Rodriguez for the CBM Collaboration Goethe University, Frankfurt am Main

The Compressed Baryonic Matter (CBM) experiment & the Silicon Tracking System (STS)

The CBM experiment:

- Explore the QCD phase-diagram at moderate temperature and high density.
- Au + Au @ 2-11 AGeV (SIS100) at 10^{5} - 10^{7} interactions/s.
- Fast self-triggering electronics and time-stamped readout.
- High speed data processing and acquisition system.
- 4D event reconstruction and fast selection algorithms.

STS features & requirements:

- 8 tracking stations inside 1 T field.
- Double-sided Si micro-strip sensors \sim 300 μ m r thickness and 7.5° stereo-angle between front and back side strips.
- High efficiency and momentum resolution.
- Tracking up to 1000 charged particles/collision.
- Radiation hardness: 10^{14} 1 MeV n_{eq}/cm^2 .
- Low mass: material budget per station in the range 0.3 - 1.5% X₀.

The Silicon Tracking System Readout Chain

Block diagram of the STS Readout chain

Front End Board (FEB)

Part of a functional module, where • 2 FEB with custom designed ASIC are connected via microcables to a Si sensor.

- Every FEB contains 8 STS-XYTER ASICs for reading out 1024 channels.
- Provides digitized hits.
- Located close to the Si sensors.

Read out Board (ROB)

- Data aggregation from several ASICs.
- Optical readout interface.

• Control and clock distribution.

Based on CERN GBTx and Ver-

- satile Link components.
- Located inside STS box.

 \rightarrow Limited space.

 \rightarrow Radiation hardness.

Common Readout Interface (CRI)

- CBM DAQ layer with common hardware platform.
- FPGA based.
- Timing and control interfaces.
- Data preprocessing.
- **First Level Event Selection** (FLES)
- Time slice building & full event reconstruction.
- Online event selection.

Front-end Electronics & Full Detector Modules

STS-XYTER \rightarrow **STS** + **X,Y** coordinates + **T**ime and **E**nergy **R**esolution Low power, self-triggering ASIC dedicated for reading out the double-sided Si sensors.

AGH University of Science and Tecnologies

Full Detector Module Prototype \rightarrow 6.2×6.2 cm² silicon micro-strip sensor + 45 cm microcable.

- 128 readout channels + 2 test channels.
- Time resolution: \sim 5 ns.
- 14 bit time stamp.
- 5 bit flash ADC/channel.
- 15 fC dynamic range.
- Radiation hard layout.
- Digital backend compatible
- with the CERN GBTx data concentrator.

ASIC Startup and Basic Functionalities

Test of comunication & backend interface:

- Communication interface.
- Synchronization protocol.
- Device access and configuration.
- Register access (Write/Read).
- Generating and reading out test hits.

ASICs and Module Tests

Module readout & Equivalent Noise Charge (ENC): First test of a fully assambled module. Estimated noise level per channel

Distribution of the ADC gain for both polarities.

STS-XYTERv2 prototype.

Calibration:

Development of test procedures to calibrate and evaluate in-channel ADCs.

Features:

- -Internal pulse generator (range up to 15 fC)
- -Global registers set ADCs range. -Every ADC channel has 31 discriminators with individually adjustable threshold (8 bit).

Stability test and ENC as function of time:

Test box designed for testing and cooling a full detector module.

0.325 0.320

ENC measured as function of time for electrons & holes.

