Radiation hardness studies of the silicon microstrip sensors for the CBM experiment

levgeniia Momot^{1,2,3} for CBM collaboration

¹Goethe University, Frankfurt; ²GSI, Darmstadt; ³KINR, Kyiv

Compressed Baryonic Matter experiment and Silicon Tracking System

CBM experiment:

- Au+Au collisions @SIS100 2 -11 AGeV, 10^5 - 10^7 interactions/s;
- up to 10^3 charged particles per central collision.

physics program @SIS100:

- Strangeness;
- Lepton pairs;
- Collective flow, correlations and fluctuations;

Silicon Tracking System:

- 8 tracking stations;
- hit rates up to 20 MHz/cm²;
- low material budget $\sim 1.5\%$ X₀;
- 25 μ m hit spatial resolution;
- S/N>10 for the hit reconstruction efficiency \sim 95 %.

Double-sided micro-strip Si sensors:

- Hypernuclei and hypermatter;
- Charm-anticharm quark pairs.

- $285/320 \ \mu m$ thick, 58 μm strip pitch;
- sensor sizes 6×2 , 6×4 , 6×6 , 6×12 cm²;
- 7.5° stereo-angle front-back sides;
- radiation hard: 10^{14} 1 MeV n_{eq}/cm^2 .

Experimental set-up & program of measurement

Read out:

ASIC front-end Beetle (according to our needs) Daughter Board was customised) and DAQ system (Alibava): - external trigger mode;

- 2×128 r/o channels;

• Thermal enclosure: thermal cycle from 24°C to $-11^{\circ}C \sim 2h$; colling liquid: $H_2O + Glycole$;

• collimated β source: 90 Sr (90 Y decay E_{max}= 2.28 MeV);

• Trigger and MIPs selection: Scintillator (2.5 cm thick) + Photomultiplier.

Sensors under test:

- latest prototypes: HPK (Japan) & CiS (Germany);
- three sizes: 2×6 , 4×6 , 6×6 cm²;
- irradiated to: 10^{13} , 5×10^{13} , 10^{14} , 2×10^{14} 1 MeV n_{eq}/cm². What to measure:
- current (to find breakdown point) & bulk capacitance (to find full depletion voltage) vs. applied voltage;
- signal amplitude before and after irradiation; noise

The aim of this work – to study relative changes of irradiated prototypes of different outer dimensions in terms of charge collection efficiency.

Electrical characteristics

Leakage current dependence on the applied bias voltage.

Bulk capacitance as a function of reversed bias

SNR:

CCE as a function of bias voltage and SNR

CCE was calculated as a ratio of the charge collection measured after irradiation (Q_{irr}) to the value observed before irradiation (Q_{non}): $CCE = \frac{Q_{irr}}{Q_{non}}$.

Charge collection efficiency:

The final picture of all tested sensors is presented. Empty markers are used for sensors produced by CiS, full – by HPK.

Influence on the STS performance

Simulations involving a realistic detector response model:

• noise of full system based on STS-XYTER (sensor + microcable + r/o) • deterioration of CCE

