

The Transition Radiation Detector in the CBM Experiment at FAIR

Philipp Kähler¹, Felix Fidorra¹

¹ WWU Münster, Germany

Physics Performance

Dielectron Measurements

- Intermediate-mass dielectrons (s. figure)
- Quarkonia in pA (and AA)
- Photons via γ-conversion

Hadron Identification

- Separation of light nuclei (e.g. $d \leftrightarrow {}^{4}He$)
- Important for hypernuclei program (e.g. ${}^{5}_{\Lambda}He \rightarrow {}^{4}He + p + \pi^{-}$)
- Different charge states cannot be identified with TOF alone
- Additional hadron ID via *dE/dx*-measurement in the TRD

m_{inv}(GeV/c²)

 m_{inv} (GeV/ c^2)

Picture reference in this section: The Transition Radiation Detector of the CBM Experiment at FAIR, Technical Design Report for the CBM, doi: 10.15120/GSI-2018-01097

p (GeV/c)

Detector Design

Requirements and Setup

- High-rate capabilities (interaction rates of heavy systems: up to 10 MHz)
- Pion rejection factor ≈ 20
- Charged particle identification
- Tracking capabilities (STS \rightarrow TOF)
- µ tracking in MUCH setup

Design Parameters	Value
Pseudo-rapidity coverage	1.15 < η < 3.65
Max. height × width	5.15 m × 6.25 m
Gas volume	1.36 m³
Active detector area	113.4 m ²
Material budget	< 5 % per layer
Number of modules	216
Number of readout channels	329728
Max. signal collection time	300 ns
Max. hit rate / channel (MB Au+Au at 10 AGeV)	≤ 100 kHz

- 4-layer detector geometry
- Modular structure

Max. occupancy (cent. Au+Au at 10 AGeV)	< 10 %
Space point resolution	~ 300 µm
π-Suppression (90% e-efficiency, $p \ge 1.5 \text{ GeV}/c$)	20
dE/dx-Resolution ($p > 1 GeV/c$)	≤ 30 %

Working Principle

- Radiator (irregular type: PE foam foils) mounted in front of the detector
- Electron identification by absorption of additionally generated TR photons
- Detector: Multi-Wire Proportional Chamber (MWPC) with segmented pad plane
 - Thin design (3.5+3.5 mm / 5 mm drift) \Rightarrow fast signal collection, rate tolerance
- Counting gas: Xe/CO₂ (85:15)
- Front-end electronics: analogue shaping, digitisation and self-triggered, free-streaming digital message building in highly integrated SPADIC* chips

* for "Self-triggered Pulse Amplification and Digitization asIC"

Recent Detector Performance

- Energy resolution in ⁵⁵Fe measurement: σ/μ down to 8.4 % Master Thesis Johannes Beckhoff, Aug. 2018
- Overall detection efficiency (detector, front-end electronics, DAQ): (98.5 ± 2.0) % confirmed in e⁻ beam Master Thesis Adrian Meyer-Ahrens, Mar. 2019

 \Rightarrow high γ absorption cross-section

High-Rate Tests at the CERN Gamma-Irradiation Facility (GIF⁺⁺)

• In-beam test: MWPC and CBM-DAQ chain prototype with SPADIC read-out

at the CERN-GIF, ionisation load up to CBM design values

- 14 TBq ¹³⁷Cs γ source as base load (flexible attenuation system) and μ beam from CERN-SPS, μ signal in DAQ
- Observable:
 µ detection efficiency w.r.t. detector load
- Analysis of data and detector behaviour ongoing: energy deposition processes, prevailing charge in detector gas cp. CBM events, ion back-flow

Counting rate, self-trigger (kHz/cm²)

