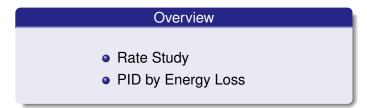
Rate and PID in the MVD

Laura Zotti


University of Turin

XXXI PANDA Collaboration Meeting - 8-12th March 2010

< 日 > < 回 > < 回 > < 回 > < 回 > <

2

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < @

Angular Distribution

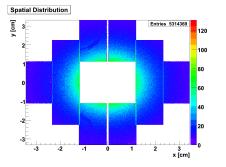
・ロ・ ・ 四・ ・ 回・ ・ 回・

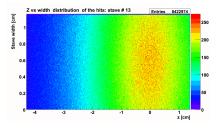
æ

Rate Estimation

Achtung Bitte!!

- Almost Complete Geometry
- No Digitalization
- No Time Distribution
- 2 10⁷ annihilations




▲ □ ▶ ▲ 三 ▶ .

크

Annihilations	Simulated Events	Average Rate [cm ² s ⁻¹]	Maximum Rate [$cm^2 s^{-1}$]	Where?
$\overline{p} - p$	8.5 10 ⁶	8.24 10 ⁵	6.10 10 ⁶	Disk Part
$\overline{p} - N$	2.5 10 ⁶	1.85 10 ⁶	3.70 10 ⁶	Disk Part
$\overline{p} - Ar$	2.5 10 ⁶	3.30 10 ⁶	6.80 10 ⁶	Disk Part
$\overline{p} - Au$	2.5 10 ⁶	1.03 10 ⁷	1.60 10 ⁷	Barrel Part

Rate Estimation

<ロ> <同> <同> < 同> < 同> < 同> 、

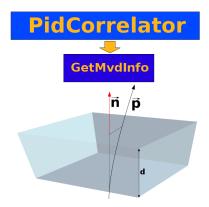
æ

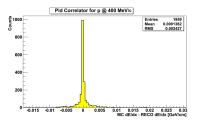
Annihilations	Simulated Events	Average Rate [cm ² s ⁻¹]	Maximum Rate [$cm^2 s^{-1}$]	Where?
$\overline{p} - p$	8.5 10 ⁶	8.24 10 ⁵	6.10 10 ⁶	Disk Part
$\overline{p} - N$	2.5 10 ⁶	1.85 10 ⁶	3.70 10 ⁶	Disk Part
$\overline{p} - Ar$	2.5 10 ⁶	3.30 10 ⁶	6.80 10 ⁶	Disk Part
p — Au	2.5 10 ⁶	1.03 10 ⁷	1.60 10 ⁷	Barrel Part

Laura Zotti Rate and PID in the MVD

PID by Energy Loss

Steps

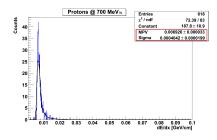

- Fix dE/dx in the PidCorrelator
- Parametrize the dE/dx
- Calculate the PDF

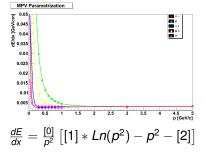

Laura Zotti Rate and PID in the MVD

・ロト ・四ト ・ヨト ・ヨト

3

PID by Energy Loss Fix dE/dx in the Pid Correlator




・ロ・ ・ 四・ ・ 回・ ・ 回・

크

$$dx = \frac{d}{\cos\theta}$$

PID by Energy Loss Parametrization

< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

▲□ ▶ ▲ □ ▶ ▲ □ ▶

PID by Energy Loss Calculate the PDF with the Bayesian Approach

- r(s|i) → conditional probability density function to observe a PID signal s if a particle of i-type is detected;
- w(i|s) → probability to be a particle of i-type if the signal s is observed;
- $C_i \rightarrow$ a priory probability to find this kind of particle.

Bayes' Formula
$$w(i|s) = rac{r(s|i)C_i}{\sum_{k=e,\mu,\pi}r(s|k)C_k}$$

PID by Energy Loss Classes Implementation

PndPidMvdPar

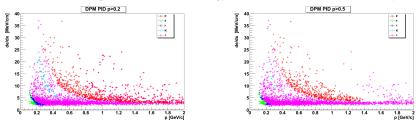
- Contains Particles (e⁻, π, μ, p, k) Parameter
- GetParticleMpv
- GetParticleSigma


PndPidMvdAssociatorTask

- Take Momentum and Energy Loss of PndPidChargedCand
- Calls PndPidMvdPar to have Mpv and Sigma

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Calculate the PDF


PID Results for Costant Flux

PID Results for DPM Events

DPM 2000 events @ 6 GeV/c no elastic

PndPidProbability * flux = new PndPidProbability(239+237,114+101,2282+2375,35+42,517+1052)

Thanks for the attention!

Laura Zotti Rate and PID in the MVD

・ロト ・四ト ・ヨト ・ヨト