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large single-collision energy transfers that increasingly extend
the long tail are rare, making the mean of an experimental
distribution consisting of a few hundred events subject to large
fluctuations and sensitive to cuts as well as to background. The
most probable energy loss should be used.

For very thick absorbers the distribution is less skewed but
never approaches a Gaussian. In the case of Si illustrated in
Fig. 27.6, the most probable energy loss per unit thickness for
x ≈ 35 g cm−2 is very close to the restricted energy loss with
Tcut = 2 dE/dx|min.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [25] and Si detectors [24], as
shown clearly in Fig. 1 of Ref. 25 for an argon-filled TPC cell.
Also see Talman [26]. While ∆p/x may be calculated adequately
with Eq. (27.8), the distributions are significantly wider than
the Landau width w = 4ξ [Ref. 24, Fig. 15]. Examples for thin
silicon detectors are shown in Fig. 27.7.
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Figure 27.7: Straggling functions in silicon for 500 MeV
pions, normalized to unity at the most probable value δp/x.
The width w is the full width at half maximum.
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Figure 27.8: Most probable energy loss in silicon, scaled
to the mean loss of a minimum ionizing particle, 388 eV/µm
(1.66 MeV g−1cm2).

27.2.6. Energy loss in mixtures and compounds : A mixture
or compound can be thought of as made up of thin layers of pure
elements in the right proportion (Bragg additivity). In this case,
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where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (27.1) can be inserted into Eq. (27.10)
to find expressions for 〈Z/A〉, 〈I 〉, and 〈δ〉; for example, 〈Z/A〉 =∑

wjZj/Aj =
∑

njZj/
∑

njAj. However, 〈I 〉 as defined this
way is an underestimate, because in a compound electrons
are more tightly bound than in the free elements, and 〈δ〉 as
calculated this way has little relevance, because it is the electron
density that matters. If possible, one uses the tables given in
Refs. 18 and 27, which include effective excitation energies and
interpolation coefficients for calculating the density effect correc-
tion for the chemical elements and nearly 200 mixtures and com-
pounds. If a compound or mixture is not found, then one uses the
recipe for δ given in Ref. 20 (repeated in Ref. 1), and calculates
〈I〉 according to the discussion in Ref. 7. (Note the “13%” rule!)

27.2.7. Ionization yields : Physicists frequently relate total
energy loss to the number of ion pairs produced near the particle’s
track. This relation becomes complicated for relativistic particles
due to the wandering of energetic knock-on electrons whose
ranges exceed the dimensions of the fiducial volume. For a
qualitative appraisal of the nonlocality of energy deposition in
various media by such modestly energetic knock-on electrons,
see Ref. 28. The mean local energy dissipation per local ion
pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [29]. For gases,
W can be surprisingly sensitive to trace amounts of various
contaminants [29]. Furthermore, ionization yields in practical
cases may be greatly influenced by such factors as subsequent
recombination [30].

27.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many
small-angle scatters. Most of this deflection is due to Coulomb
scattering from nuclei, and hence the effect is called multiple
Coulomb scattering. (However, for hadronic projectiles, the
strong interactions also contribute to multiple scattering.) The
Coulomb scattering distribution is well represented by the theory
of Molière [31]. It is roughly Gaussian for small deflection
angles, but at larger angles (greater than a few θ0, defined below)
it behaves like Rutherford scattering, with larger tails than does
a Gaussian distribution.

If we define
θ0 = θ rms

plane =
1√
2

θrms
space . (27.11)

then it is sufficient for many applications to use a Gaussian
approximation for the central 98% of the projected angular
distribution, with a width given by [32,33]
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13.6 MeV
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]
. (27.12)

Here p, βc, and z are the momentum, velocity, and charge
number of the incident particle, and x/X0 is the thickness of the
scattering medium in radiation lengths (defined below). This
value of θ0 is from a fit to Molière distribution [31] for singly
charged particles with β = 1 for all Z, and is accurate to 11% or
better for 10−3 < x/X0 < 100.

Eq. (27.12) describes scattering from a single material, while
the usual problem involves the multiple scattering of a particle
traversing many different layers and mixtures. Since it is from a
fit to a Molière distribution, it is incorrect to add the individual
θ0 contributions in quadrature; the result is systematically too


