

### <sup>•</sup> Development of 10 bit pipeline ADC and triggerless data processing readout

#### Marek Idzik Sz. Kulis, K. Świentek, T. Fiutowski AGH-UST Kraków







- Design and measurements of 10 bit pipeline ADC
- Triggerless readout with amplitude and time measurement
  - Simulations
  - Test setup
  - Measurements results

# Design of 10 bit pipeline ADC



- □ 10 bit pipeline ADC 1.5 bit/stage
- Variable sampling frequency up to ~25 Ms/s
- Scalable power consumption
- □ Fully differential
- Power switching OFF/ON (ILC, CLIC beam timing)
- Present version in 0.35 µm AMS, smaller size technology soon...





-1

#### ADC static measurements

1



Input voltage [V]



Very good linearity INL < 1LSB, DNL < 0.5 LSB

4

### ADC dynamic measurements



Good dynamic performance ENOB ~ 9.5 bit



ADC - power OFF/ON



Depending on sampling frequency 8-16 clocks needed for switching ON





Presently power consumption about 1-1.5 mW/MHz at worst case (Nyquist input frequency, output buffers)

We have just submitted 8 channels ADC version layout with a pitch 200 µm per channel 7



#### **Deconvolution - idea**



- No trigger ADC continuously running
- □ Fixed pulse shape at ADC input!!!
- Very good candidate is a semi-gausian
  1<sup>st</sup> order CR-RC, only 3 samples are
  needed
- Timing and amplitude information are obtained manipulating deconvoluted samples

□ For CR-RC shaping - 100% pileup free if  $\Delta T_{pulse} > 3T_{samp}$ , e.g.  $T_{peak} = 100$ ns,  $T_{samp} = 100$ ns  $\rightarrow$  no pileup if  $\Delta T_{pulse} > 300$ ns



Amplitude info is obtained from the sum of blue samples and timing info from their ratio (for both lookup tables needed)

### **Deconvolution after CR-RC**

Simulated



Other than CR-RC shapers are also considered but not shown here since no measurements are available 9



#### Readout architecture for luminosity detector at ILC/CLIC

Prototypes in AMS ADC ASIC FRONT END ASIC 0.35 µm 8 channels PREAMP SHAPER S/H PIPLINE ADC front-end SILICON PIPLINE ADC 1 channel ADC SENSOR (no zero DATA CONCENTRATOR suppression) PIPLINE ADC М OPTICAL DRIVER U PIPLINE ADC ZERO X SUPP BUFFERS ₽₽₽₽₽ \_\_\_\_ 뉬 눐너 \_\_\_\_ BIASING SLOW CONTROL DA/ SLOW CONTROLL BIASING DATA FROM OTHER ASIC'S 







 $\frac{U_{out}(s)}{I_{in}(s)} = \frac{1}{C_f C_i R_s} \cdot \frac{s + 1/C_p R_p}{s + 1/C_f R_f} \cdot \frac{1}{(s + 1/C_i R_i)(s + 1/C_p (R_p || R_s))}$ 



- □ ASIC with 8 channels
- Variable gain (MIPs and high input charge up to ~ 10pC)
- $\Box$  C<sub>det</sub> range ~ 0-500 pF
- □  $1^{st}$  order shaper  $T_{peak} \sim 60$  ns
- □ Power consumption < 9 mW/chan

### Test setup preparation



AGH

- Dedicated PCB board
- Silicon sensors for LumiCal
- Dedicated fanout
- 8 channel ASICs with preamplifier and shaper plus external buffers
- At present 8 channels external ADC (CAEN, our prototype has only 1 channel)



The results shown on next slides are obtained with electrical input test pulses - sensor not yet mounted







 $\Delta t/T_{sampling}$  resolution < 6%, Amplitude resolution ~ 3-4% 13







 $\Delta t/T_{sampling}$  resolution ~4-5%, Amplitude resolution ~ 1.8% 14





- Works on readout architecture with triggerless data sampling and signal deconvolution started:
  - Simulations studies with different shapers
  - Measurements with CR-RC shaper
- First measurements show promising results regarding timing and amplitude resolution
- Good agreement between simulations and measurements
- □ To be done:
  - Measurements with prototype multichannel ADC ASIC
  - Further ADC development (for less power)
  - Other shapers...



## Front-end measurements

Gain



Noise

| Mode        | Gain    | Noise@50pF | Linearity | Rate  | Crosstalk |
|-------------|---------|------------|-----------|-------|-----------|
|             | [mV/fC] | [fC]       | [pC]      | [MHz] | [%]       |
| Physics     | 0.107   | 0.62       | 10        | 3     | ≈1        |
| Calibration | ≈20     | 0.28       | 0.035     | 2.5   | ≈0.1      |