STT Activities in Jülich

S. Costanza, G. Kemmerling, V. Kozlov, P. Kulessa, H. Ohm, S. Orfanitski, N. Paul, K. Pysz, J. Ritman, M. Roeder, V. Serdyuk, P. Wintz, P. Wüstner IKP & ZEL at FZJ

Outline

- STT design
- Activities in Jülich
- Particle intensities

STT Design

4200 straws

- 20-26 planar layers in 6 sectors (hexagon)
- 8 skewed layers (±3°) for 3d-reco
- ~80% (85)% active volume
- Ar/CO₂ at p ~ 2 bar
- high efficiency
- dE/dx capability
- $\sigma_{r_{\phi}}$ ~ 150 μm
- σ_z ~ 2.9 mm
- X/X₀~1%

CAD drawing by Dario Orecchini (INFN Frascati)

• 4200 straws

STT Layout

- Al-mylar film, d=27µm
- Ø=10mm, L=1200mm
- close-packed with 15µm gaps in
- self-supporting double-layers
- STT Length: 1200 / 1500mm
- inner/outer radius: 160 / 410mm

PANDA Meeting, Mar-2010

Mechanical Frame

- 2 semi-barrels around beam-target cross-pipe
- light-weight frame structure (Dario)
- self-supporting straw layers

Supply & readout

- 15cm longitud. space for
- electric straw contacting
- gas manifolds/ supply
- cable routing
- readout boards
- cage

1.2

Drawings and design by Dario (INFN Frascati)

Peter Wintz

Activities in Juelich

Design & construction of full-scale prototype

- straw production going on
- electric & gas connection of split tubes
- new design electric straw contacts
- optimise gas supply

Small-scale prototype setup

- 8×16 straw setup, 1500mm length
- test of different readout options
 - TDC, fQDC
 - dE/dx (Krzysztof)
- cosmic tests (Susanna, Valeriy)

STT Full-Scale Prototype

Setup at IKP

- Simplified mechanical frame structure (AI)
- Straws not all wired
- Check mechanics of straw stacks
- Develop compact gas & HV supply
- Develop real-scale assembly technique
- Mechanical precision tests finally with reconstructed cosmics / p-beam tracks

Current Design Issues

- Integrated double-layer supply
 - gas & HV
 - standard connector to RO
 - limited longitudinal space
 - simplified, modular assembly
 - supply & readout at backward side
- Split tubes connection
 - impedance matching
- Add one axial straw layer
 - 80 ➡ 85% active volume helps
 - dE/dx resolution and
 - track recognition

STT @ COSY-TOF

STT mounted at the COSY-TOF front cap in spring 2009

V. Kozlov & S. Orfanitski in front of STT

Mounting the front cap with STT to the vacuum barrel

STT @ COSY-TOF

- 2740 straws, stack of 26 planar layers
- Operated inside vacuum at ~10⁻³ mbar
- Ar/CO2(10%) at p=1.25 bar (absolute)
- Readout:

2.4

- preamps in vacuum, 13m cables
- discr.(ASD8) + TDC(GPX)

 Test system for PANDA-STT: straw calibration method similar

Installed & 1st beam time in May 2009, p p ➡ pKA at 2.95 GeV/c, 2 weeks

PANDA Meeting, Mar-2010

Peter Wintz

Particle Intensities

- p(bar) beam intensity during HESR cycle
- pellet beam variation
- p(bar) p interaction cross-section
- particle hit numbers in STT geometry

Luminosity at PANDA

Luminosity in HESR (@15GeV/c)

- average: L_{ave} = 2.0 ×10³² cm⁻² s⁻¹
- initial: $L_0 = 3.5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
- time structure by beam lifetime τ_{beam}=8450s

Lumi variation by pellet beam distribution

- max. variation factor ~5
- peak: L_{peak} ~ 8 × 10³² cm⁻² s⁻¹
- microscopic time structure
 τ ~1msec

Hit Numbers in STT

Event numbers:

- initial: 2×10⁷ events/s (τ ~ 8500s)
- average: 1×10⁷ events/s
- peak: 4×10⁷ events/s (τ ~ 1ms)

Number of particle hits in STT geometry

from p(bar) p simulation

- at innermost straw layer
- hit numbers for 2×10⁷ events/s
 - 1.4×10⁴ /cm/sec @ z=2cm (elast. scat)
 - 7×10⁵ /straw/sec and 6×10³ /cm/s
- peak intensities for 4×10⁷ events/s
 - 3×10⁴ hits/cm/sec
 - ~1.5×10⁶ hits/straw/sec
 - on ~ 1msec timescale

PANDA Meeting, Mar-2010

Peter Wintz

Slide 13

Particle Rates Summary

- Intensities much below 10⁵ hits/sec/cm
 - no space charge effects in STT
- At ~1.5×10⁶ hits/sec/straw and ~250 ns electron drift
 - double-pulse resolution gets important