Contribution ID: 21

Type: not specified

The GSI and FAIR laser cooling activities

Wednesday, 29 January 2020 17:15 (5 minutes)

Stored and cooled relativistic heavy-ion beams have a small relative momentum spread ($\Delta p/p$) and a small emittance (ϵ) and are therefore ideally suited for high-precision experiments, such as laser and X-ray spectroscopy. At storage rings, cooling is typically achieved by means of electron and/or stochastic cooling, which yield cooling times of several seconds and $\Delta p/p \sim 10^{-5}$.

Laser cooling can, however, cool ion beams even faster and reach $\Delta p/p \sim 10^{-7}$. Furthermore, laser cooling becomes more effective at higher energies than electron cooling, and is – unlike stochastic cooling – not limited to low ion beam intensities. The future Facility for Antiproton and Ion Research (FAIR) will offer heavy-ion beams (as well as antiproton beams) with highest energies and intensities. The heavy-ion synchrotron SIS100 is (at) the heart of FAIR and stores, accelerates, and delivers the beams – initially provided by the GSI accelerators – to the FAIR experiments (i.e. the APPA, CBM, NUSTAR and PANDA collaborations). At the SIS100 laser appling of hundred heavy ion heaves is our preferred method and is currently being pro-

At the SIS100, laser cooling of bunched heavy-ion beams is our preferred method and is currently being prepared for [1,2]. Cooling is achieved by balancing the force from anti-collinear laser light exerted on the ions by the counter-acting force from the rf-bucket.

Calculations show that laser cooling at the SIS100 can be almost as effective as has been demonstrated at the ESR [3]. Furthermore, it should assist in making the SIS100 ion bunches – achieved by means of bunch compression (< 50 ns) – even shorter, thus offering world-wide unique possibilities. Because of the huge magnetic rigidity (100 Tm) of the SIS100, very large gamma factors (up to 13) and correspondingly large Doppler-shifts can be achieved, which should enable laser cooling (and laser spectroscopy) of a broad range of ion species. We will present the general concept of bunched beam laser cooling and provide an overview of the laser cooling pilot facility at the SIS100.

Primary authors: Dr WINTERS, Danyal (GSI, Darmstadt); Dr SPILLER, Peter (GSI, Darmstadt); KLAMMES, Sebastian (GSI, Darmstadt); Prof. WALTHER, Thomas (TU Darmstadt)

Co-authors: Mr BUß, Axel (Institut für Kernphysik, WWU Münster); Prof. WEINHEIMER, Christian (Institut für Kernphysik, University of Münster); Mr KIEFER, Daniel (TU Darmstadt); Mr WINZEN, Daniel (Institut für Kernphysik, WWU Münster); Mr NOLDEN, Fritz (GSI, Darmstadt); Dr WANG, Hanbing (Institute of Modern Physics, Chinese Academy of Sciences); EIDAM, Lewin (GSI Darmstadt); Dr LOESER, Markus (HZDR); Dr STECK, Markus (GSI, Darmstadt); Dr SIEBOLD, Mathias (HZDR); Dr BUSSMANN, Michael (HZDR); BOINE-FRANKEN-HEIM, Oliver (GSI, Darmstadt); Dr SÁNCHEZ ALARCÓN, Rodolfo Marcelo (GSI, Darmstadt); KÜHL, Thomas (GSI, Darmstadt); STÖHLKER, Thomas (GSI, Darmstadt); Prof. SCHRAMM, Ulrich (HZDR); Dr HANNEN, Volker (Institut für Kernphysik, WWU Münster); Dr WEN, Weiqiang (Institute of Modern Physics, Chinese Academy of Sciences); Prof. MA, Xinwen (Institute of Modern Physics, Chinese Academy of Sciences); Mr HUANG, Zhongkui (Institute of Modern Physics, Chinese Academy of Sciences);

Presenter: KLAMMES, Sebastian (GSI, Darmstadt)

Session Classification: Poster Session