ACCEPTANCE IN FORWARD DETECTORS

RADOSLAW KARABOWICZ

GSI, DARMSTADT

XXXII PANDA CM, MARCH 2010

PANDA GEOMETRIES

] LONG CENTRAL TRACKER:

- STT coverage down to ~20 deg
- GEM coverage from ~20 Deg down

SHORT CENTRAL TRACKER:

- STT coverage down to ~25deg
- GEM coverage from ~25Deg down

SIMULATIONS

1 MILLION MUONS SHOT IN TWO COMPARED GEOMETRIES

FROM VERTEX (OCM, OCM, OCM)

WITH EVENLY DISTRIBUTED MOMENTA:

- $|P| \in (0.1 \text{GeV/c}, 20 \text{GeV/c})$
- $-\vartheta \in (0^{\circ}, 40^{\circ})$
- φ ∈ (0°,360°)

ACCEPTANCE MAP, DCH,

 Θ VS MOMENTUM

4

ACCEPTANCE MAP, DCH,

ΘVSΦ

5

ACCEPTANCE MAP, LONG, GEM,

 Θ VS MOMENTUM

ACCEPTANCE MAP, SHORT, GEM,

 Θ VS MOMENTUM

ACCEPTANCE MAP, LONG, STT, ØVS MOMENTUM

8

ACCEPTANCE MAP, SHORT, STT, ØVS MOMENTUM

9

ACCEPTANCE MAP, STT, LONG ALL SHORT

ACCEPTANCE MAP, STT, LONG INNER PARALLEL SHORT

ACCEPTANCE MAP, STT, LONG SKEWED SHORT

12

ACCEPTANCE MAP, STT, LONG OUTER PARALLEL SHORT

SCHEMATIC ACCEPTANCE MAPS

SCHEMATIC ACCEPTANCE MAPS

15

SUMMARY

SHORTENING STT BY ~30CM REDUCES <u>STT O ACCEPTANCE BY ~5 DEGREES</u>

ADDING A GEM STATION AT ~83CM INCREASES <u>GEM Θ ACCEPTANCE BY ~1DEGREE</u> AND PROVIDES TWO ADDITIONAL HIGH-RESOLUTION MEASUREMENT POINTS FOR ANOTHER ~7 DEGREES IN Θ

THE REGION OF OVERLAPPING STT & GEM ACCEPTANCE <u>REDUCES FROM ~6 DEGREES TO ~2 DEGREES</u>

CONCLUSIONS

- ACCEPTANCE MAPS FOR STT, GEM AND DCH HAS BEEN PRODUCED FOR TWO DIFFERENT DESIGNS OF CENTRAL TRACKER AND GEM-TRACKER
- IN CASE OF LONG CT AND 3 GEM STATIONS IT LOOKS THAT STANDALONE TRACK FINDERS IN STT AND GEM WILL BE SUFFICIENT TO COVER ACCEPTANCE WITHOUT GAPS IN Θ
 - IN CASE OF SHORT CT AND 4 GEM STATIONS A TRACK FINDER USING HITS FROM DIFFERENT DETECTORS HAS TO BE USED
-] SIMPLEST CHOICE IS THE USAGE OF THE LHE TRACK FINDER AND COMPARING TRACK EFFICIENCIES AND MOMENTUM RESOLUTION IN THE REGION OF $\Theta \in (20^{\circ}, 25^{\circ})$

GLOBAL IDEAL TRACK MERGER

- A GLOBAL IDEAL TRACK MERGER HAS BEEN DEVELOPED RECENTLY
- TRACK FINDERS
- ALL STANDALONE TRACK FINDERS SHOULD USE AND RETURN ARRAYS OF PndTracks, USING PndTrackCand AND PndTrackCandHit

GLOBAL PANDA ENUMERATION VARIABLES SHOULD BE USED CONSEQUENTLY AND CONSISTENTLY ALL THROUGHOUT THE pandaroot CODE

PndDetectorList.h

ON FEBRUARY THE 2ND I HAVE STARTED A DISCUSSION ABOUT THE **fDetectorId** ENUM IN **PndDetectorList.h**. THE DECISION WAS TAKEN TO RENAME IT TO: **fDataId**, BUT I SEE NOW THE CHANGE WAS NOT ENOUGH, CAUSE IT IS MAINLY USED AS:

Int t fDetectorId (class member) = fDataId;

ON FEBRUARY THE 23RD CHRISTIAN REQUESTED HAVING planeId INFORMATION AVAILABLE FOR GENFIT. HE PROPOSED PUTTING IT IN PNdTrackCand BUT I THINK HE REALLY MEANT THE PNdTrackCandHit. ANYWAYS, NATURAL PLACE TO PUT IT IN IS THE INT t fDetectorId

PndDetectorList.h

<pre>// PndDetectorList.header file // Created 11/02/09 by M. Al-Turany //</pre>	
/** Unique identifier for all Panda detector systems **/	
<pre>#ifndef PNDDETECTORLIST_H #define PNDDETECTORLIST_H 1</pre>	Detectorid up to 5 bits
enum DetectorId { kDCH, kDRC, kDSK, kEMC, kGEM, kLUMI, kMDT, kMVD, kRPC, kSTT, kTPC, kTOF, kHYPG, kHYP};	
/** Unique identifier for all Panda Point and Hit types **	/
<pre>enum fDetectorType { kUnknown, kMCTrack, kTpcPoint, kTpcCluster, kMVDPoint, kMVDDigiStrip, kMVDDigiPixel, kMVDClusterPix kEmcCluster, kEmcBump, kSttPoint, kSttHit, kSttHelixHit, kGemPoint, kGemDigi, kGemHit, kDchPoint, kDchDigi, kDchHit, kTrackCand, kTrack};</pre>	tectorType (up to 5 bits) ly copies info from DetectorId g name (will be changed to fiataType)
<pre>enum SensorSide { kTOP, kBOTTOM };</pre>	
#endif	

fDetectorld class member

Is a member of almost every data storage class:

- fDetectorID, f.e. in FairMCPoint, FairHit
- fDetectorid, f.e. PndGemDígí
- fDetID, f.e. in PndMvdDigi
- fDetId, f.e. in PndTrackCandHit
- What is the idea behind this variable? Should it ultimately become identifying part of any data: digi, hit or track?

Can we use the whole 32bits of the value to store valuable information like detector, plane, sensor or even strip number?

Usage of fDetectorld

- GenFit RecoHitFactories. Each data structure should have different number attached to easily recognize, which implementation of RecoHitFactory to use.
 - "So to summarize, the detector ID in the trackCand would consist of a bit mask. Some part of this bit mask would be the kGemHit, kSttHit, kMvdPixelHit, ... which is used to produce hits in the RecoHitFactory. Could we do it a way that this kGemHit, kSttHit, kMvdPixelHit, ... info is in the least significant bits? That way it will be easiest for me. Regards, Christian"
- FairMultiLinkedData. Each data structure should have different number attached to easily distribute MC information over the digis/hits/tracks and so on; and to be able to automatically obtain information about the MC origin of any data structure...
- "In my point of view all branches stored in a root file should have a unique ID to retrieve the data in an automatic way. This is mandatory to use the MC information propagation as I tried to explain in my presentation during the last EVO meeting. Cheers, Tobias"

fDetectorld class member

My initial proposition: DATA TYPE DETECTOR ID LAYERID OTHER INFORMATION 4 BITS 5 BITS 5 BITS 18 BITS LEFT like: like: like: other information like: stationID for GEM **MCTrack MVD** fired digi number for MVD **MCPoint** STT stationID for DCH fired digi number for GEM TPC layerID for STT fired straw number for DCH digi cluster GEM sextant number & straw number for STT hit DCH local track EMC DRC global track Problems: not all detectors fit in the scheme: "5 bit LayerID, and rest"

- possible crazy combinations (dataType = bump ξξ detectorID = MVD)
- tracks do not have layer ID, global tracks do not have detectorID

final PndDetectorList.h final fDetectorId class member

Final meaning that we all agree on it

PndDetectorList.h

Int_t fDetectorId

Thank you!

Backup slides

Backup slides

