## EMC Bump splitting

D. Melnychuk, SINS Warsaw

PANDA collaboration meeting, 08.03.2010

## Bump splitting

Cluster

$\pi^{0}$ with high energy can produce in EMC single cluster with two local maxima (bumps) for each of the $\gamma$ from the decay $\pi^{0} \rightarrow \gamma \gamma$

Two step algorithm:
(1) Finding of local maxima
(2) Digis are shared between bumps in iterative procedure.

## Weights

$$
w_{i, d}=\frac{E_{d} \cdot e^{-2.5 \cdot r_{i, j} / R_{m}}}{\sum_{j} E_{d} \cdot e^{-2.5 \cdot F_{j, d} / R_{m}}}
$$

where $r_{i, d}$-distance between d-th digi and i-th bump, $R_{m}$ Moliere radius of the material.
$\pi^{0}$ energy spectrum for $p=15 \mathrm{GeV} / \mathrm{c}$ antiproton beam


## Forward endcap



Mass reconstructed in range [0.115;0.155] GeV.
Energy threshold - 30 MeV .

Angular granularity of crystals $\sim 0.5^{\circ}$.

## Generated events

$10000 \pi^{0}$
Energy: 1-14 GeV
$\theta: 14^{\circ}, \phi: 0-360^{\circ}$
Geant 3 simulation with the whole PANDA geometry

Efficiency of $\pi^{0}$
reconstruction-80.0 \%.
Efficiency of $\pi^{0}$
reconstruction (w/o bump
splitting) - $26.8 \%$.

## Forward endcap - Reconstruction of opening angle



## Barrel



Mass reconstructed in range [0.115;0.155] GeV. Energy threshold - 30 MeV .

Angular granularity of crystals - 0.7-2.0 ${ }^{\circ}$.

Generated events
$10000 \pi^{0}$
Energy: 1-7 GeV
$\theta: 30-130^{\circ}, \phi: 0-360^{\circ}$
Geant 3 simulation with the whole PANDA geometry

Efficiency of $\pi^{0}$
reconstruction-61.5 \%.
Efficiency of $\pi^{0}$
reconstruction (w/o bump
splitting) - 20.1\%.

## Barrel - Reconstruction of opening angle



## Babar framework - Reconstruction of opening angle

Geant 4 simulation with the whole Panda geometry of $\pi^{0}$ with $\mathrm{E}=1-7 \mathrm{GeV}, \theta=30-130^{\circ}$

$\pi^{0}$ reconstruction efficiency within range $[0.115 ; 0.155] \mathrm{GeV}$ 58.2 \% vs 61.5\% in pandaroot.

## $\pi^{0}$ distribution from DPM at $15 \mathrm{GeV} / \mathrm{c}$




$\pi^{0}$ reconstruction efficiency - 74 \% with and without bump splitting

## $2 \gamma$ 's with fixed angular distance $\alpha=5^{\circ}$

Two $\gamma$ 's with fixed angular distances $\alpha=1,2,3,4,5^{\circ}$ (5000 events for each) have been produced in pandaroot for with equal energy $\mathrm{E}=0.5-3.5 \mathrm{GeV}$ (1-7 GeV total energy), $\theta=30-130^{\circ}$ with EMC detector geometry only.





## $2 \gamma$ 's with fixed angular distance $\alpha=4^{\circ}$





## $2 \gamma$ 's with fixed angular distance $\alpha=3^{\circ}$



D. Melnychuk, SINS Warsaw

EMC Bump splitting

## $2 \gamma$ 's with fixed angular distance $\alpha=2^{\circ}$




## $2 \gamma^{\prime}$ s with fixed angular distance $\alpha=1^{\circ}$



D. Melnychuk, SINS Warsaw

EMC Bump splitting

## Summary

- Bump splitting algorithm demonstrate similar performance in pandaroot and Babar framework.
- Realistic distribution of background $\pi^{0}$ from DPM decrease requirements on bump splitting performance in barrel region, where EMC granularity is lower.

