# EMC Bump splitting

#### D. Melnychuk, SINS Warsaw

#### PANDA collaboration meeting, 08.03.2010

D. Melnychuk, SINS Warsaw EMC Bump splitting

ヘロト ヘアト ヘビト ヘビト



 $\pi^0$  with high energy can produce in EMC single cluster with two local maxima (bumps) for each of the  $\gamma$ from the decay  $\pi^0 \rightarrow \gamma\gamma$  Two step algorithm:

- Finding of local maxima
- Digis are shared between bumps in iterative procedure.

#### Weights

$$\mathbf{W}_{i,d} = \frac{E_d \cdot e^{-2.5 \cdot r_{i,d}/R_m}}{\sum_i E_d \cdot e^{-2.5 \cdot r_{j,d}/R_m}}$$

where  $r_{i,d}$  - distance between d-th digi and i-th bump,  $R_m$  - Moliere radius of the material.

ヘロト ヘ戸ト ヘヨト ヘヨト

# $\pi^0$ in EMC



Technical Design Report for Panda EMC, p. 35

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

### Forward endcap



Mass reconstructed in range [0.115;0.155] GeV. Energy threshold - 30 MeV. Angular granularity of crystals  ${\sim}0.5^{\circ}.$ 

#### Generated events

10000  $\pi^0$ Energy: 1-14 *GeV*  $\theta$ :14°,  $\phi$ :0-360° Geant 3 simulation with the whole PANDA geometry

Efficiency of  $\pi^0$ reconstruction - 80.0 %. Efficiency of  $\pi^0$ reconstruction (w/o bump splitting) - 26.8 %.

3

くロト (過) (目) (日)

## Forward endcap - Reconstruction of opening angle





Mass reconstructed in range [0.115;0.155] GeV. Energy threshold - 30 MeV. Angular granularity of crystals - 0.7-2.0  $^{\circ}.$ 

#### Generated events

10000  $\pi^0$ Energy: 1-7 *GeV*  $\theta$ :30-130°,  $\phi$ :0-360° Geant 3 simulation with the whole PANDA geometry

Efficiency of  $\pi^0$ reconstruction - 61.5 %. Efficiency of  $\pi^0$ reconstruction (w/o bump splitting) - 20.1%.

3

イロト イポト イヨト イヨト

## Barrel - Reconstruction of opening angle



# Babar framework - Reconstruction of opening angle

Geant 4 simulation with the whole Panda geometry of  $\pi^0$  with E=1-7 GeV,  $\theta$ =30-130°



 $\pi^0$  reconstruction efficiency within range [0.115;0.155] GeV - 58.2 % vs 61.5% in pandaroot.

# $\pi^0$ distribution from DPM at 15 GeV/c





 $\pi^0$  reconstruction efficiency - 74 % with and without bump splitting

イロト イポト イヨト イヨト

### 2 $\gamma$ 's with fixed angular distance $\alpha = 5^{\circ}$

Two  $\gamma$ 's with fixed angular distances  $\alpha = 1, 2, 3, 4, 5^{\circ}$  (5000 events for each) have been produced in pandaroot for with equal energy E=0.5-3.5 GeV (1-7 GeV total energy),  $\theta$ =30-130° with EMC detector geometry only.



D. Melnychuk, SINS Warsaw

EMC Bump splitting

### 2 $\gamma$ 's with fixed angular distance $\alpha = 4^{\circ}$







### 2 $\gamma$ 's with fixed angular distance $\alpha = 3^{\circ}$







### 2 $\gamma$ 's with fixed angular distance $\alpha = 2^{\circ}$







# 2 $\gamma$ 's with fixed angular distance $\alpha = 1^{\circ}$



æ

Opening angle vs  $\theta$ 



- Bump splitting algorithm demonstrate similar performance in pandaroot and Babar framework.
- Realistic distribution of background  $\pi^0$  from DPM decrease requirements on bump splitting performance in barrel region, where EMC granularity is lower.

(個) (目) (日) (日)