Kaon identification for tagging the Double - Λ - hypernuclei production at PANDA

Alicia Sanchez Lorente

- **General Motivation**
- Introduction to Experimental concept ٠
- **Detection Strategies** ٠
- **Background Suppression Methods**
- Outlook

Bundesministerium für Bildung und Forschung

Gamma Spectroscopy of double hypernuclei at PANDA

- p +Nucleus->Ξ +Ξ + at 3GeV/c
 Other Exp. E906 AGS-BNL, JPARC
 (K⁻ + p -> K⁺ + Ξ -)
- Cross section 2µb
- Luminosity 10³² cm⁻²/s to 7.10⁵ Ξ⁻ +Ξ⁺ hour
- Ξ ⁻ p -> ΛΛ + 28 MeV
- energy release may give rise to the emission of excited hyperfragments (¹³_MB^{*})
- Two-step production mechanism requires a devoted setup

Integration in the PANDA Detektor

- θ_{lab} < 45°, Ξ +, K trigger (PANDA)
- $\theta_{\text{lab}} = 45^{\circ} 90^{\circ}$,
 - 1. Primary target : $p + {}^{12}C \rightarrow \Xi + \Xi^{-}$,
 - 2. Secondary target, Ξ Capture , Hyp. Production
- $\theta_{lab} > 90^{\circ}$, γ detection at backward

Neutrons Background (16000 n s⁻¹ per Crystal)

Integration in the PANDA Detektor

- $\theta_{lab} < 45^{\circ}$, Ξ +, K trigger (PANDA)
- $\theta_{lab} = 45^{\circ} 90^{\circ}$,
 - 1. Primary target : $p + {}^{12}C \rightarrow \Xi + \Xi^{-}$,
 - 2. Secondary target, Ξ Capture , Hyp. Production
- $\theta_{lab} > 90^{\circ}$, γ detection at backward

Neutrons Background (16000 n s⁻¹ per Crystal)

Detection strategy: Signal

•_Use different light nuclear targets, (<u>9Be, 10B, 11B, 12C and 13C)</u> to study the population of individual excited states.

•-Identification of $\Lambda \Lambda$ hypernucleus through sequential weak decay via π - emission;

- 1. in light nuclei the pionic weak decay dominates
- 2. the pion kinetic energy is proportional to ΔB_{AA}
- 3. the pion momentum is monoenergetic
- 4. coincidences between two pions help to trace
- 5. Combination of gamma spectroscopy and sequential pionic decay as to identify uniquely double hypernuclei.

•- π momentum is monoenergetic: used as fingerprint

•
$${}^{A}{}_{\Lambda\Lambda}Z \rightarrow \pi_{H} + {}^{A}{}_{\Lambda}(Z+1)$$

2. ${}^{A}{}_{\Lambda}(Z+1) \gg \pi_{L} + {}^{A}(Z+2)$

Identification of double hypernuclei: γ + weak decay

- 1. Mesonic weak decay of the order of 10%
- 2. Sequential mesonic decay of DHP releasing 2 pions

Background Suppression Strategy: Low Momenta Kaon identification

- p +Nucleus-> ± + ± + at 3GeV/c
- Cross section 2µb
- p + p , total cross section 50 mb

• Exp.Challenge:
$$\frac{\sigma(X^{-}X^{+})}{s \ (\overline{p}p)}$$
 · 4 ·10⁻⁴

- Background reactions are a factor 25000 larger than $\Xi^- + \Xi^+$ prod.
- Background suppression is mandatory
- kaon (Ξ + annihilation) identification can be used to tag the Ξ + Ξ + prod.
- Pion-Pion Correlation technique(sequential pionic decay) and
- Gamma Spectroscopy .(arXiv:0903.3905v1 [hep:exp])

Detection Options:

DIRC : not for low momentum particles

➤TPC/STT Use of (dE/dx) for PID

TPC/STT + TOF detector system :

Start detector: CVD Diamond

(Timing use, E. Bederman et al, Proc. IEEE(2009)

Stop detector : Scint. tof barrel ~16 Slabs ~6 bars or RPC.

Diamond+TPC + TOF

•Tof barrel (STOP) Time resolution ~ 80ps

- •CVD Diamond Detector (START) Time resolution ~ 80 ps
- •TPC : tracking system Track Length + P

P/Mass = $\beta * \gamma$

• Geo. Acceptance:

Hyp IP :15°--90°

TS IP : 144° -- 22°

STRATEGY : identification of at least one kaon per event. (kaon multiplicity trigger)

MC Simulation :

Extended UqmdSmm (A.Galoyan) Event Generator :

Signal : 200,000 Ξ ⁻ + Ξ ⁺ events

Background : 100,000 p +Nucleus

Calculations performed at B = 1T and 0.5 T.

Tracking: Ideal track finder algorithm

Track Fitting: RiemannTrack at PndTools Package

associated positive kaon distribution at generation vertex

STRATEGY : identification of at least one kaon per event. (kaon multiplicity trigger)

associated positive kaon distribution at generation vertex

Requirements :

Central Tracker + Tof radius ≈ 0.5 m

- $P_{T} = 0.3*Q*B*Radius$
- B = 2 T, kaon Pt \approx 0.3 GeV/c
- B = 1T, kaon Pt = 0.150 GeV/c (*FINUDA, ALICE, CDF*)
- B = 0.5 , kaon Pt = 0.075 GeV/c (*ALICE*)

Cut on accepted kaon candidates at B=0.5 T

- Tagging on at least one kaon : 764 absorbed Ξ^{-} events
- Secondary target: 15000 Ξ^{-} absorbed
- Event Generator : 200,000 Ξ ⁻ + Ξ ⁺ events
- S/N = 3:1 gamma energy spectra

p + Nucleus background contribution (Urqmd+Smm, A. Galoyan et al)

- magnetic field value 0.5T
- start(80 ps)
- 100,000 p+Nucleus reactions

- 3206 rec. kaons
- No signal

(Urqmd+Smm, A. Galoyan et al) **14** 14r 12 12 a) ¹¹_{AA}Be b) ⁹ _{A A}Li 10 10 0.14 counts counts 8 $\mathbf{Be}_{\Lambda\Lambda}^{\mathbf{11}}$ 6 Li $^{9}_{\Lambda\Lambda}$ 0.12 $\mathbf{Be}^{9}_{\Lambda}$ + \mathbf{H}^{4}_{Λ} $Be_{\Lambda\Lambda}^{10}$ P_{Low} (GeV/c) Գ 0.1 1 2 3 4 5 6 7 8 9 10 Gamma-ray Energy (MeV) Gamma-ray Energy (MeV) **14**[------12^[12] 0.08 12 10 d) ⁹₄Be +⁴₄H d) ¹⁰_{^^}Be 10 counts counts 8 0.06 **6**ł 0.04 Գ 5 6 7 8 9 10 5678 9 10 2 3 4 2 34 0.04 0.06 0.08 0.1 0.12 0.14 Gamma-ray Energy (MeV) Gamma-ray Energy (MeV) P_{High} (GeV/c)

p + Nucleus background contribution

More statistic is needed

Conclusions:

- Multiplicity kaon trigger based on TOF helps for background suppression but statistic regarding p+Nucleus should be improved.
- Tracking information from Sec. Target has to be used complementary.
- B = 0.5 T increases the kaon identification acceptance
- A possible start detector solution: diamond detector with a time resolution of about 90 ps, example. HADES)
- The use of a TOF barrel detector will help in the identification of Double –Lambda Hypernuclei at PANDA.

Radiation hardness study

