Reconstruction of hypernuclei in CBM

<u>Maksym Zyzak</u>¹, Ivan Kisel^{1,2,3}, Pavel Kisel^{1,2,4}, Iouri Vassiliev¹ (for the CBM collaboration)

1 – GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

- 2 Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- 3 Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
 - 4 Joint Institute for Nuclear Research, Dubna, Russia

DPG Spring Meeting, München 19.03.2018

Hypernuclei in CBM

One of the physics cases of the CBM experiment is study of hypernuclei:

- Single and double hypernuclei.
- Precise measurements of hypernuclei lifetime.
- Measurement of branching ratios of hypernuclei.
- Direct access to the hyperon-nucleon (YN) interaction through measurements of B_{Λ} in a hypernucleus.
- "Hyperon puzzle" in the astrophysics: understanding of YN interaction is crucial for neutron star physics.
- Search for strange matter in the form of heavy multi-strange objects.

Advantages of CBM:

- According to theoretical predictions energy region of CBM is preferable for production of hypernuclei.
- Complex topology of decays can be easily identified in CBM with a low background.
- The detector system is well suited for identification of produced hypersystems.
- High interaction rates, optimal collision energies and clean identification will allow to search for AA-hypernuclei.

J. Steinheimer et al., "Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production versus Coalescence," Phys. Lett. B 714 (2012) 85

Challenges in CBM

CBM experimental setup

Central AuAu UrQMD event with $\bar{\Omega}^{\scriptscriptstyle +}$ decay highlighted

No hardware trigger possible

- A fixed-target experiment with a forward geometry high track density.
- Up to 1000 charged particles/collision.
- 10⁵-10⁷ collisions per second.
- No hardware triggers free streaming data.
- On-line time-based event reconstruction is required with selection of extremely rare probes (like one $\overline{\Omega}^+$ per 10⁶ collisions).

- On-line reconstruction at the dedicated high performance computing farm (GSI Green IT Cube).
- High speed and efficiency of the reconstruction algorithms are required.
- The algorithms have to be highly parallelised and scalable.
- CBM event reconstruction: Kalman Filter and Cellular Automaton.

Concept of KF Particle

1. KFParticle class describes particles by:

- 2. Covariance matrix contains essential information about tracking and detector performance.
- 3. The method for mathematically correct usage of covariance matrices is provided by the KF Particle package based on the Kalman filter (KF) developed by FIAS group^{1,2} primarily for CBM and ALICE.
- 4. Heavy mathematics requires fast and vectorised algorithms.
- 5. Mother and daughter particles are KFParticle and are treated in the same way.
- 6. The natural and simple interface allows to reconstruct easily rather complicated decay chains.
- 7. The package is geometry independent and can be easily adapted to different experiments.

1. KF Particle — S. Korpuinde, providence on Strattion Providence on Strattion Providence on Stratting Providence on Stratting

2. KF Particle Finder — M. Zyzak, "Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR," Dissertation thesis, Goethe University of Frankfurt, 2016, <u>http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/41428</u>

KF Particle Finder: more than 150 decay channels

Physics coverage

All main CBM decays are covered

0.2

Single-A hypernuclei

- AuAu, 10 AGeV, 5M central UrQMD events + thermal isotropic signal, TOF PID.
- Background can be further reduced with additional dE/dx PID.
- For ⁴∧He background can be reduced selecting only primary hypernuclei.

Multiplicities:

- A.Andronic, et. al, "Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions," Phys. Lett. B, 697 (2011) 203
- J. Steinheimer et al., "Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production versus Coalescence," Phys. Lett. B 714 (2012) 85

CBM is sensitive to light hypernuclei containing a single Λ within current predictions of their multiplicities

Double-A hypernuclei

- Background can be further reduced with additional dE/dx PID.
- For ⁵^AHe and ⁵^AAH background will be reduced selecting only primary hypernuclei.

AuAu, 10 AGeV, 1012 central events equivalent, TOF PID

High statistic measurements at 10^7 interaction rates will allow to measure double- Λ hypernuclei

Maksym Zyzak, DPG 2019, München

Fit quality of hypernuclei

- The fit quality is demonstrated, for example, at ${}^{3}\Lambda H$ hyperon.
- Y and Z components have similar distribution to X.
- Residual difference between simulated and reconstructed parameters, pull residual normalised by the error.
- The KF Particle mathematics allow to obtain correct errors and, as a result, correct pulls (unbiased, width about 1), χ^2 and flat prob (p-value) distributions.

Further improvements: dE/dx in STS and TRD

- CBM can perform dE/dx PID in two detectors: STS built from silicon strip detectors and TRD built from gaseous detectors.
- The expected resolution should be enough to separate 1 and 2-charged particles and clean up ³He from proton contamination and ⁴He spectra from protons and deuterons.
- The studies of including dE/dx are ongoing.

Further improvements: add more channels

- For better control over the systematic errors all possible channels should be studied.
- The missing mass method for reconstruction of short-lived particles with a neutral daughter particle was developed and added to the KF Particle Finder package.
- It was successfully applied to reconstruction of Σ , Ξ , Ω hyperons (see next talk HK 20.5 by Pavel Kisel) and can be applied to the hypernuclei.
- Possible decays of single-Λ hypernuclei that can be studied:

${}^{3}\Lambda H \rightarrow {}^{3}He \pi^{-}$	${}^{4}\Lambda H \rightarrow {}^{4}He \pi^{-}$	${}^{4}\Lambda \text{He} \rightarrow {}^{3}\text{He} \text{ p} \pi^{-1}$
d p π-	t p π-	d p p π-
ppnπ-	d d π -	pppnπ-
t π ⁰	³ He n π -	⁴ He π^0
	ppnπ-	d d π^0
		t p π ⁰

Summary

- CBM is perfectly suited for registration of hypernuclei.
- The mathematically correct algorithms of KF Particle Finder allow precise reconstruction with high efficiency and significance.
- With the optimal collision energies, data rates up to 10⁷ Hz, precise reconstruction algorithms CBM provides great opportunities to study AA-hypernuclei.
- The developed missing mass method opens access to a large fraction of possible decay channels of hypernuclei, thus, allowing direct measurements of branching ratios and providing tools for the control over systematic errors.

Plans

- Improve PID of daughter particles by adding dE/dx information.
- Add more decay channels to the reconstruction scheme.
- Studies of systematic errors.

- Due to the low multiplicities, spectra for double-Λ hypernuclei can not be simulated on the event-by-event level with a statistics of 5M events.
- As the first approximation the background was
 - a) fitted with a function $f(x) = A \cdot e^{a_1 x^2 + b_1 x} \cdot (B e^{a_2 x^2 + b_2 x})^p$;
 - b) normalized to 1012 events;
 - c) for ⁴_{AA}H, ⁵_{AA}H and ⁶_{AA}He the shape was taken from similar decay topologies and shifted according to the mass difference.
- In case of ⁶_{AA}He no entries were found for 5M events. As the upper limit one entry per 5M events was assumed.