

DPG – Frühjahrstagung 2019

Status of the CBM Time-of-Flight wall

Ingo Deppner for the CBM-TOF Group

Physikalisches Institut der Uni. Heidelberg

Outline:

- Introduction
- CBM-ToF requirements
- TDR ToF wall design
- FAIR Phase 0 program
 - eTOF@STAR
 - mTOF@mCBM
- Summary

Introduction

- Tracking acceptance: $2^{\circ} < \theta_{Lab} < 25^{\circ}$
- Free streaming DAQ
- Software based event selection
 - R_{int} = 10 MHz (Au + Au)

Group reports: 4 Short reports: 22 Poster: 2

Incident particle flux

URQMD simulated charged particle flux from Au + Au events for an interaction rate of 10 MHz

- Flux ranging from 0.1 to 100 kHz/cm²
- At different regions
 Time-of-Flight detectors
 with different rate
 capabilities are needed

Ingo Deppner

Requirements

Charged hadron identification is provided by Time-of-Flight (ToF) measurement

CBM-ToF Requirements

- > Full system time resolution $\sigma_T \sim 80$ ps
- Efficiency > 95 %
- ➢ Rate capability ≤ 30 kHz/cm²
- Polar angular range 2.5° 25°
- Active area of 120 m²
- > Occupancy < 5 %</p>
- Low power electronics
 - (~100.000 channels)
- Free streaming data acquisition

Multi-gap Resistive Plate Chambers (MRPC) are the most suitable ToF detectors fulfilling our requirements

CB	M	0	F

		NAE	NAE	544	NAE	MAE					
M6	M6	M5	M5	M4	M5	M5	M6	M6			
		M5	M5	M4	M5	M5					
M6	M6	M5	M5	M4	M5	M5	M6	M6			
		M5	M5	M4	M5	M5					
M6	IVIO	M5	M5	M4	M5	M5	IVIO	M6			
	M6	M5	M5	M4	M5	M5	M6	M6			
M6		M5	M5	M4	M5	M5					
	M6	M5	M5	M4	M5	M5					
M6	IVIO	M5	M5	M4	M5	M5	IVID	M6			
	M6	M5	M5	M4	M5	M5	M6				
M6	WIO	M5	M5	M4	M5	M5	WIO	M6			
	M6	M5				M5	M6				
M6	IVIO	M5	M2	M1 M3	M5	IVIO	M6				
	M5	M5	IVIS		IVIS	M5	M5				
M6	M5	M5				M5	M5	M6			
	M5	M5	M2		M2	M5	M5				
M6	M5	M5				M5	M5	M6			
	M5	M5				M5	M5				
M6	M5	M5				M5	M5	M6			
	M5	M5	M3	M3	M1	M3	M5	M5			
M6	M6	M5	IVIS	IVIT	I WIS		WIS	M5 M5 M5	M6	M6	
		M5									
M6	M6	M5	M5	M4	M5	M5	M6	M6			
		M5	M5	M4	M5	M5	WIG				
M6	M6	M5	M5	M4	M5	M5	M6	M6			
		M5	M5	M4	M5	M5	WIO				
M6	M6	M5	M5	M4	M5	M5	M6	M6			
		M5	M5	M4	M5	M5					
M6	M6	M5	M5	M4	M5	M5	M6	M6			
		M5	M5	M4	M5	M5	1410				
M6	M6	M5	M5	M4	M5	M5	- M6	M6			
	WIO	M5	M5	M4	M5	M5					
M6	M6	M5	M5	M4	M5	M5	M6	M6			
	WIO	M5	M5	M4	M5	M5	WIO				

- 6 types of modules (M1 – M6) only
- A module contains several MRPC counters
- Region containing counters equipped with float glass
 - Region containing counters equipped with low resistive glass

٠

•

Region containing counters equipped with ceramic material

	32cm x	30cm		-	M5 M5	M5 M5	- M6	M6
					M5	M5	- M6	M6
				1228	M5	M5		IVIO
					M5	M5	M6	M6
				1	M5	M5	M6	
					M5	M5		
				1	M5	M5		
					M5	M5	M6	M6
					M5	M5		
					M5	M5	M6	M6
					МЗ	M5	M6	M6
	and the second second	- Sheep				M5		
	M5	N 5	M2	M3		M5	M5 M5 M5 M5	M6 M6
M6	M5	M5				M5		
	M5	M5				M5		
M6	M5	M5			M2	M5		
	M5	M5				M5	M5	
M6	M5	M5			M3	M5	M5	M6
	M5	M5				M5	M5	
M6		M5	M3	M1		M5	M6	M6
	M6	M5				M5		
M6	M6	M5	M5	M4	M5	M5 M5		M6
		M5	M5	M4	M5	M5	M6	
M6		M5	M5	M4	M5	M5		M6
	M6	M5	M5	M4	M5	M5	M6	
M6		M5	M5	M4	M5	M5		M6
	M6	M5	M5	M4	M5	M5	IVI6	
M6		M5	M5	M4	M5 M5		M6	
	M6	M5	M5	M4	M5	M5	M6	
M6	145	M5	M5	M4	M5	M5		M6
	M6	M5	M5	M4	M5	M5	- M6	
M6	145	M5	M5	M4	M5	M5	145	M6
	IVID	M6 M5 M	M5 M5 M4	M4	M5	M5	M6	

- 6 types of modules (M1 – M6) only
- A module contains several MRPC counters
- Region containing counters equipped with float glass
 - Region containing counters equipped with low resistive glass

٠

•

Region containing counters equipped with ceramic material

- 6 types of modules (M1 – M6) only
- A module contains several MRPC counters
- Region containing counters equipped with float glass
 - Region containing counters equipped with low resistive glass
 - Region containing counters equipped with ceramic material

6 types of modules (M1 – M6) only

CBM ToF

- A module contains several MRPC counters
- Region containing counters equipped with float glass
 - Region containing counters equipped with low resistive glass
 - Region containing counters equipped with ceramic material

- 6 types of modules (M1 – M6) only
- A module contains several MRPC counters
- Region containing counters equipped with float glass
- Region containing counters equipped with low resistive glass
- Region containing counters equipped with ceramic material

- 6 types of modules (M1 – M6) only
- A module contains several MRPC counters
- Region containing counters equipped with float glass
- Region containing counters equipped with low resistive glass
- Region containing counters equipped with ceramic material

Ingo Deppner

DPG-Frühjahrstagung, München, 18.03. - 22.03.2019

Ingo Deppner

DPG-Frühjahrstagung, München, 18.03. - 22.03.2019

Module integration and cosmic test stand in HD

Single track

cosmic event

DCS system (EPICS)

Multi differential analysis of counter properties with cosmic tracks

About 100000 good tracks per day

Ingo Deppner

DPG-Frühjahrstagung, München, 18.03. - 22.03.2019

Online Monitor

Multi track cosmic event

See next talk (HK53.2)

Multiplicity 6 tracks

- FAIR Phase 0 is a bridge program until the start of FAIR in 2025
- It comprises the installation and testing of developed equipment in running Experiments

FAIR Phase 0 programs of CBM-TOF

- 1. eTOF project at STAR@BNL (6912 channel) P. Weidenkaff - HK15.5
- 2. mTOF project at mCBM@SIS18 (1600 channel) C. Sturm - HK15.1

CBM ToF

What is the eTOF project

- eTOF project is a joint project between CBM and STAR
- eTOF project is part of the BESII detector upgrade at STAR
- It comprises the installation, commissioning and operation of CBM TOF modules positioned at the east pole tip of the STAR apparatus during the BESII campaign
- It is part of the FAIR phase 0 program

Mounting scheme

Ingo Deppner

DPG-Frühjahrstagung, München, 18.03. - 22.03.2019

16

CBM ToF

Ingo Deppner

(degree)

DPG-Frühjahrstagung, Münchun, 18.03. - 22.03.2019

∆T04 [ns]

09

0.5

F. Seck

2

0

p (GeV/c) 1 /

3.5

MRPC3a and MRPC3b mass production for eTOF CBM ToF

MRPC3a mass prod at Nuctech, Beijing

MRPC3b mass production at USTC/China

Statistics of Efficiency

Statistics of time resolution

Ingo Deppner

DPG-Frühjahrstagung, München, 18.03. - 22.03.2019

FAIR Phase 0 – eTOF@STAR

Module production and testing in HD (Jun – Oct. 2018)

Cosmic ray event

Module production in the clean room

36 modules 108 MRPCs 72 GBTX PCBs 216 GET4 PCBs 216 PADI PCBs 6912 channels

Ingo Deppner

FAIR Phase 0 – eTOF@STAR

Full installation in Nov. 2018

FAIR Phase 0 – eTOF@STAR

CBM

TOF

FAIR Phase 0 – mCBM@SIS18 CBM ToF

mCBM is a CBM full system test setup at GSI

mCBM program:

Q1 2019 detector & daq commissioning Q1 2020 high rate demonstrator Q1 2021 physics benchmark (Λ – prod) Q1 2022 Λ – excitation function

mTOF setup

- 25 MRPC3a counters
- 5 M4 modules + 10 CROB(GTBx)
- Active area: 150 x 120 cm²
- # of readout channels: 1600
- T0 diamond counter (8 channels)
- Intended interaction rate: 10 MHz

M4 module: 5 MRPC3a counters, 10 PADI, 2 Feed-through PCBs, 10 Get4, 2 backplane PCBs (with GTBx)

DPG-Frühjahrstagung, München, 18.03. - 22.03.2019

FAIR Phase 0 – mCBM@SIS18 CBM ToF

mTOF <u>1st "commissioning" beam-time in Dec. 18</u>

Ingo Deppner

DPG-Frühjahrstagung, München,

18.03. - 22.03.2019

Summary

- Counters are fulfilling the specs
- R&D for BFTC ongoing
- Innovative impedance matching solution developed
- Preproduction for MRPC3a/b counter finished
- FAIR phase 0 started looking forward to physics
- Ultra high rate test still pending \Rightarrow miniCBM
- CBM TOF ready for beam in 2024

Thank you for your attention

Contributing institutions:

Tsinghua	Beijing,
NIPNE	Bucharest,
GSI	Darmstadt,
TU	Darmstadt,
USTC	Hefei,
PI	Heidelberg,
ITEP	Moscow,
HZDR	Rossendorf,
CCNU	Wuhan,

Norbert Herrmann

Special thanks go to:

bmb+f

Großgeräte der physikalischen Grundlagenforschung

Ingo Deppner

DPG-Frühjahrstagung, München, 18.03. - 22.03.2019

27

CBM ToF

CBM Physics topics

- > Deconfinement / phase transition at high ρ_B
- QCD critical endpoint
- > The equation-of-state at high ρ_B
- \blacktriangleright chiral symmetry restoration at high ρ_{B}

Observables

- excitation function and flow of strangeness and charm
- collective flow of hadrons
- particle production at threshold energies
- excitation function of event-by-event fluctuations
- excitation function of low-mass lepton pairs
- > in-medium modifications of hadrons $(\rho, \omega, \phi \rightarrow e+e-(\mu+\mu-), D)$

Kaon acceptance depends critically on TOF resolution

Working principle of an RPC

CBM

Engineering design of the CBM experiment

Nominal ToF position is between 6 m and 10 m from the target

Movable design allows for optimization of the detection efficiency of weakly decaying particles (Kaons)

T0 – determination

Diamond start counter

- use HADES development,
- develop DAQ interface,
- limited to reaction rates ~ 100kHz

Software solution

- available for all systems
- needs fast particles from reaction
- demonstrated to work for central and semi-central heavy system

Beam fragmentation counter

- peripheral HI reaction have fast particles from projectile fragmentation
- equip region E with timing counters (BFTC)

Reaction counter

- needed for high rate pA reactions (charm at SIS 100)
- reaction counter at polar angles $35^{\circ} < \theta < 60^{\circ}$.

CBM Collaboration Meeting, Dubna, 27.09.2013

N.Herrmann, PI, Uni-HD

19

Ingo Deppner

Main parameters comparison	PADI-1	PADI-2	PADI-6	PADI-8
Channels per chip	3	4	4	8
PA Bandwidth (MHz)	280	293	416	411
PA Voltage Gain	74	87	244	251
Conversion Gain (mV/fC)	6.3	7.8	35	30
Baseline DC offset σ (mV)	6.7	21.9	5.9	1
PA Noise (mV_{RMS})	3.37	2.19	5.82	5.5
Equivalent Noise Charge (e_{RMS})	3512	1753	1039	1145
Threshold type	Extern	Extern	Ext. & DAC	DAC
Threshold dynamics $(\pm \text{ mV})$	Non.lin. 280	Non.lin. 300	Lin. 500	Lin. 750
Input Impedance Range (Ω)	30-450	37 - 370	38 - 165	30 - 160
Power consumption $(mW/channel)$	21.6	17.4	17.7	17

Ingo Deppner

DPG-Frühjahrstagung, München, 18.03. - 22.03.2019

Ingo Deppner

Ceramic RPCs for BFTC

- start-time and the reaction-plane determination.
- For CBM the use of RPC for the Beam Fragmentation T₀ Counter (BFT₀C) with low resistive radiation hard ceramics electrodes and small chess-board like single cells is under consideration.

Ceramic RPCs for BFTC

18.03. - 22.03.2019

5

Resistive Glass Development CBM ToF

Resistive glass for high-rate MRPCs is		Maximal dimension		$32 \mathrm{cm} imes 30 \mathrm{cm}$	
developed in Beijing, China	Bulk resisti	vity	$10^{10} \ \Omega \mathrm{cm}$		
		Standard thickness		$0.7, 1.1 \mathrm{mm}$	
		Thickness uniformity		$20 \ \mu m$	
32cm x 30cm		Surface roughness		< 10nm	
		Dielectric constant		7.5 - 9.5	
		DC measurement		Ohmic bebavior	
				stable up to 1 C/cm^2	
Raw resistive glass material for 400 m ²	after 1 1 1	Si ₃ N ₄ /SiC Semiconductive glass Float glass	Cyclot Cyclot Protor Neutr Neutr Neutr 0 ¹² 10	ron U-120M (Řež n energy, 36 MeV on production tai on flux, 10 ⁸ - 10 ¹⁰ on energy spectra) ¹³ 10 ¹⁴ ence [n/cm ²]) rget, Be ⁾ n/cm ² /s a, 1 – 36 MeV
Ingo Deppner	DPG-Frühjahrstag	gung, München,			37
	18.03 22.03.2019				

TDR ToF wall layout high rate region

Beam-time @ SPS in Nov. 2015

Ingo Deppner

Beam-time @ SPS in Nov. 2015

