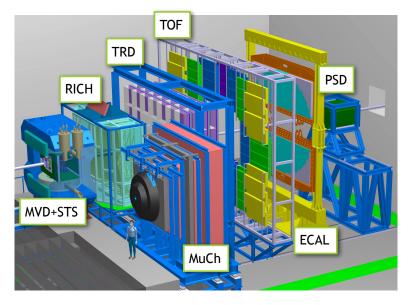


Application and improvement of the Cellular Automaton track finder in the TPC detector

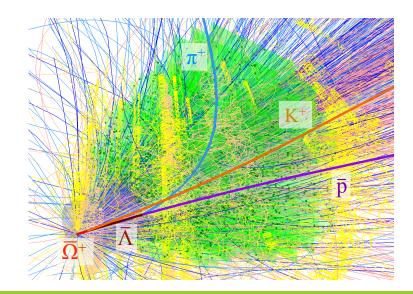
HGS-HIRe for FAIR

Bundesministerium für Bildung

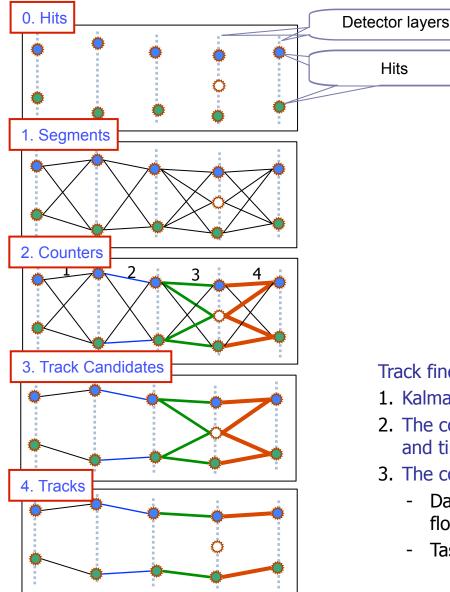

und Forschung

<u>**G.Kozlov**</u>^{1,2,3}, I.Kisel^{1,2,4}

¹Goethe University, Frankfurt, Germany ²FIAS, Frankfurt, Germany ³JINR LIT, Dubna, Russia ⁴GSI, Darmstadt, Germany


20.03.2019

Challenges in CBM


- On-line reconstruction at the on-line farm with 60.000 CPU equivalent cores.
- High speed and efficiency of the reconstruction algorithms are required.
- The algorithms have to be highly parallelised and scalable.
- CBM event reconstruction: Kalman Filter and Cellular Automaton.

- CBM a future fixed-target heavy-ion experiment at FAIR, Darmstadt, Germany.
- Interaction rate 10⁵-10⁷ collisions per second.
- Up to 1000 charged particles/collision.
- Free streaming data.
- No hardware triggers.
- On-line time-based event reconstruction and selection is required in the first trigger level.

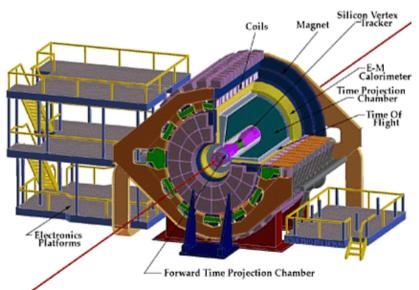
Application and improvement of CA track finder in the TPC detector

Cellular Automaton Track Finder

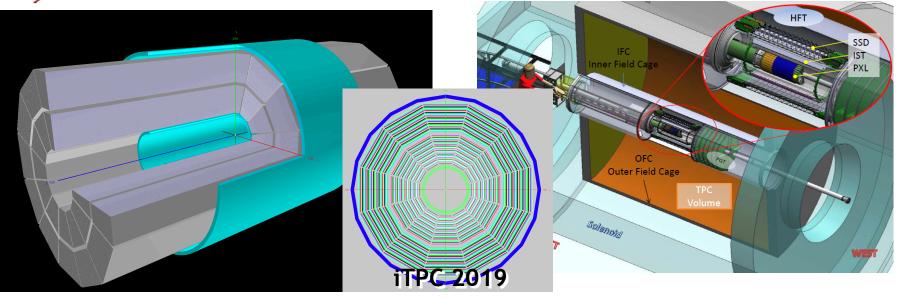
Cellular Automaton:

- 1. Build short track segments.
- 2. Connect according to the track model, estimate a possible position on a track.
- 3. Tree structures appear, collect segments into track candidates.
- 4. Select the best track candidates.

Cellular Automaton:

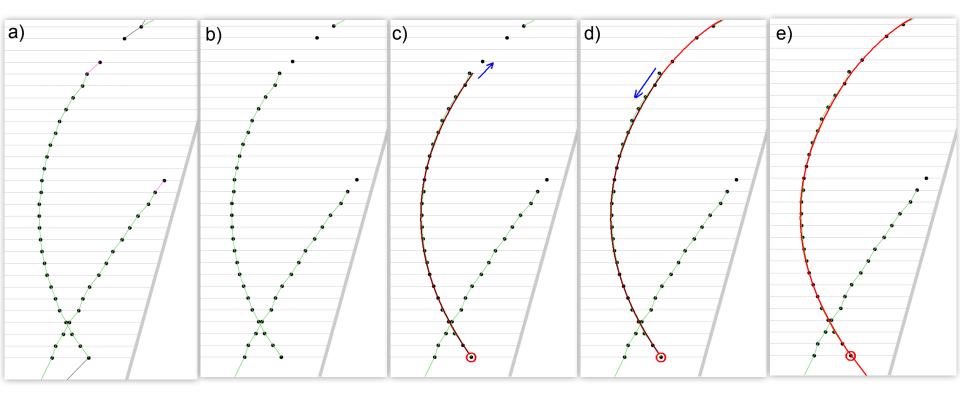

- local w.r.t. data
- intrinsically parallel
- extremely simple
- very fast

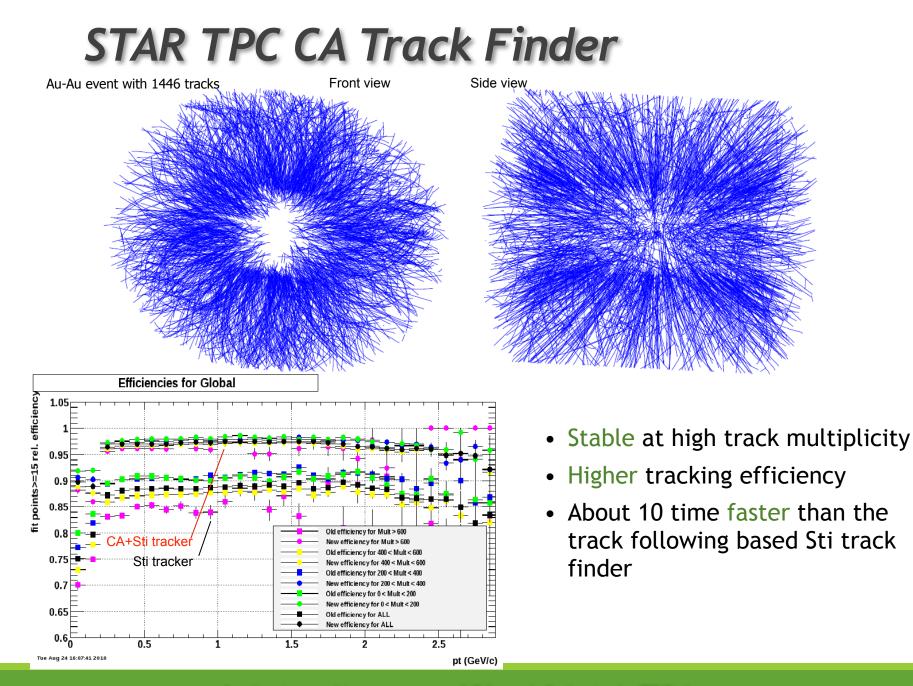
Perfect for many-core CPU/GPU !


Track finder:

- 1. Kalman filter for track segments fit
- 2. The code is optimised with respect to both efficiency and time
- 3. The code is parallelised
 - Data level (SIMD instructions, 4 single-precision floating point calculations in parallel)
 - Task level (ITBB, parallelisation between cores)

STAR at BNL

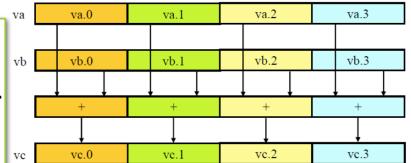

- Collider experiment at RHIC, BNL
- Up to 200 AGeV Au-Au collisions
- Main detector Time Projection Chamber (TPC)
- Standard Sti track reconstruction is based on track following
- Increased RHIC luminosity
- Upgrade the reconstruction algorithms for:
 - vectorization
 - multi-threading
 - many-core systems
- Study of the CA tracking algorithm within FAIR Phase 0



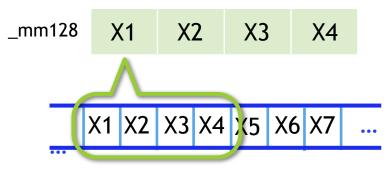
Application and improvement of CA track finder in the TPC detector

CA track reconstruction in STAR TPC

- 1. Reconstruction of track segments in each TPC sector:
 - a) Find and link neighbouring hits
 - b) Clean links
 - c) Create segments by fitting chains and adding outer hits
 - d) Refit tracks and add inner hits
 - e) Selection of tracks
- 2. Merge sector tracks into TPC global tracks.

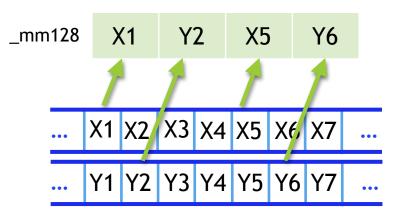


Application and improvement of CA track finder in the TPC detector


Vectorisation

vc = vec_add(va, vb)

- SIMD intrinsics with Vc headers are used.
- Faster calculations with the same hardware.
- Optimal for streaming calculations.

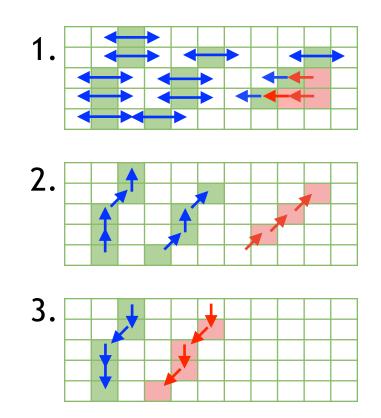


Sequential memory access

- All data in one cash line.
- No overhead for long SIMD registers.
- Maximal speed up.
- Algorithm?

Random memory access

- Data copying from different cash lines.
- More overhead for long SIMD registers.
- Reduced speed up.


"Game of Life"

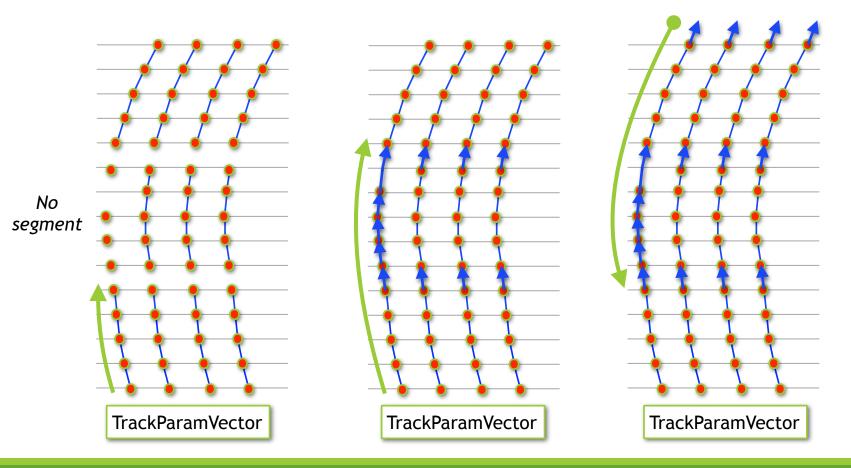
The Game of Life is a cellular automaton devised by the British mathematician John Horton Conway in 1970. Its evolution is determined by its initial state and a rule set, requiring no further input.

Same evolution rules for all cells -> no combinatoric -> streaming calculations

In TPC:

- 3D cell structure for every 5 rows
- Cell, containing a hit, is "alive"
- 3 waves of evolution:
 - 1. Same row no direct neighbours;
 - 2. Down to up lower neighbour exists;
 - 3. Up to down upper neighbour exists.
- Combine hits from every corridor into 5-hit segments and pack them in SIMD vectors
- Fit segments
- Store good segments

"Game of Life" and SIMD intrinsics


- Evolution of every cell does not depend on each other.
- Evolution rules are the same for every cell at one step.
- Cell states can be stored in aligned arrays.
- Ready for SIMDization
- Optimal for sequential memory access
- Scalable for register sizes

Problem: Empty cells • Waste of memory Loss of speed up

- Pack data into int8 (char) and int16 (short) arrays.
- Use SIMD intrinsics for int8 elements.
- Maximal speed up factor 16 (SSE).
- Real speed up factor depends on the track multiplicity.

Tracklet construction

- 1. Fit segments in the vector mode
- 2. Extrapolate tracks to the next stations moving to the next segments. Try to catch additional hits if there is no segment.
- 3. Refit the track back, trying to add more hits in the inner rows.

Application and improvement of CA track finder in the TPC detector

Results

A new segment constructor:

- Low efficiency for short tracks and • tracks with small XZ angle
- Vectorizable and scalable •
- Will be used as a first step for the • standard CA track finder to improve its calculation speed and scalability

Efficiency

	New	Standard	
Long tracks	83.0 %	99.2 %	
Reco tracks/ev	298	355	
All tracks	55.8 %	93.3 %	
Reco tracks/ev	386	653	
Clone	5.9 %	10.6 %	
Ghost	6.2%	13.7 %	
	All tracks Long trac		

Ghost:

purity < 90%

Calculation time

	New		Standard tracking	
	Scalar	SIMD	Scalar	SIMD
Sector tracking	17.7 ms	8.1 ms	24.7 ms	16.2 ms
- Chains/Segments	14.2 ms	5.5 ms	15.7 ms	12.2 ms
- Tracklets	3.5 ms	2.6 ms	7.0 ms	3.8 ms

Intel Xeon X5550 at 2.7GHz

Summary

- A Cellular Automaton based track finder in the CBM STS and STAR TPC detectors is fast and efficient even in the case of high track multiplicity.
- A "Game of Life" procedure for track segment finding improves the capability of SIMDization of the tracking algorithm.
- A new segment finding approach should be used as a first step for the standard CA tracking procedure to decrease the combinatoric level and to speed up the algorithm without losing the reconstruction efficiency.

Plans

- Adapt the algorithm for AVX and MIC intrinsics.
- Incorporate the new algorithm into the standard CA approach.