Reconstruction of eta meson at CBM-RICH detector using conversion method *

Ievgenii Kres for the CBM Collaboration University of Wuppertal

DPG 2019 München

*supported by BMBF (05P15PXFCA) and GSI

CBM conditions:

- High net-baryon densities
- Moderate temperatures

Possible features of the QCD phase diagram:

- The predicted first order phase transition between hadronic and partonic matter;
- A rich structure such as a critical point;
- New phases like quarkyonic matter.

The CBM detector

Detector setup:

- Micro Vertex Detector (MVD)
- Silicon Tracking System (STS)
- Ring Imaging Cherenkov detector (RICH)
- Muon Chambers (MUCH)
- Transition Radiation Detector (TRD)
- Time Of Flight detector (TOF)
- Electromagnetic Calorimeter (ECAL)
- Projectile Spectator Detector (PSD)

The CBM experiment

- gold-ion beam, 2 12 AGeV (SIS100)
- Fixed target (gold)
- Interaction rate: up to 10 MHz

Ievgenii Kres

20.03.2019

Motivation

CBM is designed for precise measurements of many observables including particles with very small branching ratio and low production cross section, like:

$ ho ightarrow e^+ + e^-$	$(4.72*10^{-5}\%)$
$\omega \rightarrow e^+ + e^-$	$(7.28*10^{-5}\%)$
$\phi \rightarrow e^+ + e^-$	$(2.95*10^{-4}\%)$

As leptons are not affected by final-state interactions, the di-leptonic decay offers the possibility to look into the fireball.

The main background contribution comes from π^0 and η decays:

 $\begin{aligned} \pi^0 &/\eta \to \gamma \gamma \to (e^+ + e^-) + (e^+ + e^-) \\ \pi^0 &/\eta \to \gamma + e^+ + e^- \end{aligned}$

How accurate one can reconstruct η-meson-using conversion method?

Ievgenii Kres

26.02.2018

Conversion method for η

Conversion probability for single γ before RICH detector ~ 5%

Place of γ conversions:

- 28 % in the target
- 72 % in the detector material (MVD & STS)

Lepton identification approaches

Cuts values for y reconstruction

Analysis steps:

- 1) Check the track quality:
 - cut on χ^2 from track fit
- 2) Check identification of leptons inside the RICH:
 - cut on ring B and A parameters
- 3) Search for $e^+e^- \rightarrow \gamma$ candidates:
 - cut on opening angle and invariant mass, opposite charge
- 4) If $\geq 2 \gamma$ candidates found:
 - form all possible $\gamma\gamma \rightarrow \eta$ combinations

 ~ 10 photons per event after cuts

University of Wuppertal

Cut for η reconstruction

Reconstruction steps:

- 1) Check the track quality:
 - cut on χ^2 from track fit
- 2) Check identification of leptons inside RICH:
 - cut on ring *B* and *A* parameters
- 3) Search for $e^+e^- \rightarrow \gamma$ candidates:
 - cut on opening angle and invariant mass, opposite charge
- 4) If $\geq 2 \gamma$ candidates found:
 - form all possible $\gamma\gamma \to \eta$ combinations
 - cut on γγ opening angle for η

Optimal cut:
$$10^{\circ} < \theta (\gamma \gamma) < 40^{\circ}$$

$$m_{inv}(\eta) = 547.85 \text{ MeV}$$

η candidates

The estimation and analysis is based on a simulated sample of 100×10^6 UrQMD events of central Au+Au collisions with a beam energy of 8 AGeV.

Combinatorial background is fit using 7^{th} degree polynomial in the region between $0.3 - 1.0 \text{ GeV/c}^2$ excluding signal regions

Expected signal to background ratio:

• S/B < 1 %

η background-subtracted spectrum

University of Wuppertal

Summary for η analysis

List of cuts Set 1: $m_{inv}(e^+e^-) < 10 \text{ MeV}$ $\theta (e^+e^-) < 1^{\circ}$ $10^{\circ} < \theta (\gamma \gamma) < 40^{\circ}$ <u>Set 2:</u> $m_{inv}(e^+e^-) < 20 \text{ MeV}$ $\theta (e^+e^-) < 2^\circ$ $10^{\circ} < \theta (\gamma \gamma) < 40^{\circ}$ **Set 3:** $m_{inv}(e^+e^-) < 30 \text{ MeV}$ θ (e⁺e⁻) < 3° $10^\circ < \theta (\gamma \gamma) < 40^\circ$ **Set 4:** $m_{inv}(e^+e^-) < 40 \text{ MeV}$ $\theta (e^+e^-) < 4^\circ$ $10^{\circ} < \theta (\gamma \gamma) < 40^{\circ}$ **Set 5:** ANN > 0.9 $10^{\circ} < \theta (\gamma \gamma) < 40^{\circ}$

- 100 million events in CBM: ~ <u>28 hours</u> of data taking at interaction rate of 100 kHz
- Such sample allows to count number of reconstructed η with an accuracy of ~ <u>30 %</u>

Ievgenii Kres

20.03.2019

Thank you for your attention !

Backup

Conversion points

Ievgenii Kres

Determination of primary and secondary tracks (<5)

Ievgenii Kres

20.03.2019

B and A distributions

ANN cut

Ievgenii Kres

20.03.2019

η acceptance and reconstruction efficiency

Estimation for η reconstruction

 $S/B \sim 10^{-2}$

 $S/B \sim 10^{\text{-6}}$

Momentum transfer

Momentum transfer + reconstruction uncertainties

University of Wuppertal

20.03.2019

Ievgenii Kres