The Silicon Tracking System (STS) readout chain

Adrian Rodriguez Rodriguez for the CBM Collaboration

München, March 19th, 2019

The Compressed Baryonic Matter experiment (CBM) at FAIR

Exploring the QCD phase diagram at high net baryon densities

- \rightarrow 10⁵-10⁷ A+A collisions/s
- \rightarrow Fast and radiation hard detectors
- \rightarrow Self-triggering electronics
- \rightarrow 4D event reconstruction.

- \rightarrow Introduction to the CBM Silicon Tracking System
- \rightarrow The STS readout chain design and implementation
- \rightarrow Readout chain components:
 - :: Front-end electronics (FEE)
 - :: Readout board (ROB)
 - :: Data processing board (DPB)/Common readout interface (CRI)
- \rightarrow Applications of the STS readout chain in the module assembly and test
- \rightarrow The STS in the context of the mCBM beam campaign
- → Summary & outlook

The Silicon Tracking System (STS) of the CBM experiment

sizes:

Requirements & challenges:

- \rightarrow High detection efficiency.
- \rightarrow Momentum resolution < 2%
- \rightarrow Tracking up to 1000 charged particles/collision.
- \rightarrow Low material budget 0.3%-1.5% X_o per station.
- \rightarrow lonizing dose at the electronics place \sim 200 krad/yr.
- \rightarrow Power dissipation ~40 kW.

Wednesday, March 20, 2019, 17:45–18:00, HS 12 Performance simulations of the Silicon Tracking System of the **CBM Experiment at FAIR**

Design:

Evgeny Lavrik for the CBM collaboration

 \rightarrow 8 tracking stations inside 1T magnetic field.

 \rightarrow Based on \sim 900 double-sided Si sensors with 4 different

- 2x6 cm², 4x6 cm², 6x6 cm², 12x6 cm².
- 7.5° stereo-angle for the p-side strips
- \rightarrow Built as a functional module.
 - 1 Si sensor + microcables + 2 FEB.
 - 1 FEB carries 8 ASICs (1024 channels).

Wednesday, March 20, 2019, 16:30-17:00, HS 11 The Silicon Tracking System of the CBM Experiment

levgeniia Momot for the CBM collaboration

The **STS** readout chain

- → Front End Boards: Part of a functional module; it carries 8 STS-XYTER ASIC/FEB
- \rightarrow Read Out Board: Based on CERN-GBTx and Versatile links components.
- → Common Readout Interface: FPGA based, interface for Timing and Control and data preprocessing
- → First Level Event Selector: Time slice building, full event reconstruction and online event selection

1752 FEBs	600 ROBs
24000 electrical links	2400 MM fibers
~30-80 cm	~50-80 m

78 DPBs up to 624 SM fibers ~700 m

Front-end electronics

STS-XYTER front-end ASIC

STS+X,Y coordinate, Time and Energy Resolution

- Low power, self triggering ASIC
- 128 channels readout
- time resolution: ~5 ns
- 14 bit Time stamp
- 5 bit in-channel flash ADC
- ADC linearity range up to 15 fC
- radiation hard layout
- power consumption: <10 mW/ch
- digital backend compatible with the CERN-GBTx

STATUS: STS-XYTERv2.1 with optimized features available since January 2019

Block diagram of the STS-XYTER

Front-end electronics

Front-end board (FEB-8):

- carries 8 STS-XYTER ASICs (up to 5 LVDS links/ASIC)

- connected via micro-cables to the Si sensor
- highly integrated (space, cooling)

Allow to test the ASIC integration, clock and control commands distribution

STATUS: The prototype FEB-8 have been already produced in two flavours (FEB-A, FEB-B) to address module integration aspects

Full detector module assembled with 6x6 cm² sensor, 45 cm micro-cables and 2 FEB-8

Monday, March 18, 2019, 14:45–15:00, HS 12 High-density interconnection technologies for the CBM STS Monday, March 18, 2019, 15:45–16:00, HS 12 Ladder assembly procedure for the STS of the CBM Experiment

Detector Lab

Patrick Pfistner for the CBM collaboration

Shaifali Mehta for the CBM collaboration

Common CBM prototype Readout Board (C-ROB)

for prototyping of all GBT based readout chains in CBM

- Full GBTx, SCA and Versatile Link functionality required for readout and control.
- STS: final ROB with different form factor, connectors, cooling features.

C-ROB features:

- 3 GBTx ASICs
 - :: connect up to 40 STS-XYTER devices at 320 Mbps: hit readout, control responses
- 1 Optical Transceiver (VTRx) and 1 Twin Transmitter (VTTx)
 - :: 3 optical uplinks : 13.44 Gbps total readout bandwidth
 - :: 1 optical downlink at 3.2 Gbps for control
- 1 GBT SCA
 - :: I2C interface for control of slave GBTx
 - :: additional multi purpose SCA functionality

FMC connector with all frontend connectivity

- GBTx E-Links
- required and useful SCA functionality
- flexibly connect any FEE prototype

STATUS: Available since Q4 2017

Data Processing Board

AMC FMC Carrier Kintex (AFCK) as DPB prototype available

- μTCA board
- also standalone operation
- Xilinx Kintex-7 325T FPGA
- 2 FMC (HPC) and RTM connectors
- multiple interface cards available

Flexible test and development platform:

use with various FMC interfaces for prototype readout chains.
firmware and software development DAQ systems for detector testing

STATUS: Currently it is used as the main DPB in all the DAQ systems available. From Lab detector's testing until full mSTS demonstrator

Prototype (CRI) based on the HTG-Z920 board

- it will cover the functionality of both the DPB and FLIB in a single FPGA board
- simplify the hardware/firmware design

STATUS: First boards available. Testing firmware in the development phase

Readout chains for STS

Development of **multiple DPB flavors** with different firmware and hardware components for various readout chains:

Purpose	Readout	Chain description
ASIC testing & QA	Pogo-pin station Prototype FEB (1 ASIC)	Standalone system DPB e-link flavour AFCK based
Full module testing	Test-box system - FEB-8 - Full module readout	DPB GBTx flavour AFCK based
mSTS	Several module readout	Full readout chain prototype - AFCK based (2018-2019) - CRI based (2019+)

ASIC testing & QA

AFCK based readout chain for ASIC tests and QA

Examples of ASIC test: ADC calibration, noise readout, connectivity check, long term stability

mSTS

mCBM: CBM full test setup for high rate, nucleus-nucleus collisions at GSI/FAIR GOALS:

- demonstrator for full CBM data taking and analysis
- integrating prototype detector's modules into a common, free-streaming DAQ

mSTS:

- 2 tracking stations
- 13 detector modules
- more than 26000 readout channels
- 8 ROB (13 GBps)

mSTS

Installation in the beam line

Service box of mSTS containing ½ station

Monday, March 18, 2019, 16:30–17:00, HS 12 Status of the mCBM@SIS18 experiment at GSI/FAIR

Christian Sturm for the CBM collaboration

STATUS: First station installation is completed. Data taking is ongoing

Summary and Outlook

Front-end Board, Readout Board and Common Readout Interface are the major components of CBM Silicon Tracking System readout chain:

- Prototype **FEB** with 8 STS-XYTER ASICS have been produced and tested.

- The STS-XYTERv2.1 is available since January 2019.
 - :: Two detector modules have been assembled and they are fully operational in mSTS.

- Common **ROB** has been successfully operated in multiple subsystems readout chains.

- Common **DPB** hardware based on the FPGA board functions used for various development and prototype readout chains.

:: modular approach: two DPB flavours used in the module assembly and testing

- Final STS readout chain based on the **CRI** board. Possible CRI FPGA candidate has been identified and it is currently in the testing and firmware developing phase

- mSTS project (testing setup for detector and full readout chain) is ongoing.

mCBM is a demonstrator for the CBM data taking and analysis chain (operational since December 2018)

Thanks for your attention!