

Ц С

Emissivity of Baryon-Rich Matter – **Dilepton Spectroscopy in CBM** Etienne Bechtel¹, Tetyana Galatyuk², Christoph Blume¹ for the CBM collaboration

¹ IKF – Goethe Universität, Frankfurt, Germany, ² IKP – Technische Universität, Darmstadt, Germany

Motivation

Explore QCD phase structure

Phase transition(s) and critical point - Measure caloric curve for the

hadron-QGP phase

Chiral Symmetry restoration

- Measure in-medium $\rho\,$ spectral

Electron identification

- Particle tracking:
 - STS (in dipole magnet) + TRD + TOF

Particle identification (PID):

- RICH --- Artifical Neural Network
- Likelihood method - TRD
- TOF

function ($\rho - a_1$ chiral mixing)

Muon identification

Exchange RICH by MUCH

Instrumented absorbers: 60 cm C + (20+20+30+100) cm Fe

Track topology of muon track candidates

Simulation input

Background events:

- 5 million UrQMD events

Signals:

- A cocktail of low mass vector mesons (W. Cassing et al., Nucl. Phys. A691 (2001) 753)
- Thermal radiation

Invariant mass spectra

Dielectron Spectra

Combinatorial background at top right

Reconstructed pairs of same events in red

Dimuon Spectrum

(T. Galatyuk et al., Eur. Phys.J. A52 (2016) 131)

Phase space

Phase space distribution of reconstructed ω signals and acceptance of the input

Full scale simulation with 5 million events

Background estimation via event mixing

ratio S/B

Signal-to-background Thermal radiation

Dielectron ratio top

Dimuon ratio bottom

Access to thermal radiation at intermediate mass range

Signals are corrected for acceptance and efficiency

Signal to combinatorial background ratio above 10%

High S/B ratio in the region of π_{Dalitz}^0

Clear signal peaks for ω and ϕ

Sufficiently high S/B over the whole intermediate mass range

=itfunction:
$$M^{rac{3}{2}} \cdot e^{rac{-M}{T}}$$

The running day 1 scenario will be 4 weeks at 200 kHz interaction rate - Later go to 1-10 MHz

Investigation of systematic errors in progress

