

The Transition Radiation Detector in the CBM Experiment at FAIR

Philipp Kähler¹, Alexandru Bercuci², for the CBM Collaboration

¹ WWU Münster, Germany, ² IFIN-HH Bucharest, Romania

Physics Performance

Dielectron Measurements

- Intermediate-mass dielectrons (s. figure)
- Quarkonia in pA (and AA)
- Photons via γ-conversion

p (GeV/c)

Hadron Identification

- Separation of light nuclei (e.g. $d \leftrightarrow {}^{4}He$)
- Important for hypernuclei program (e.g. ${}^{5}_{\Lambda}He \rightarrow {}^{4}He + p + \pi^{-}$)
- Different charge states cannot be identified with TOF alone
- Additional hadron ID via *dE/dx*-measurement in the TRD

 $m_{inv}(GeV/c^2)$

 m_{inv} (GeV/ c^2)

Detector Design

Requirements and Setup

- High-rate capabilities (interaction rates of heavy systems: up to 10 MHz)
- Pion rejection factor ≈ 20
- Charged particle identification
- Tracking capabilities (STS \rightarrow TOF)
- Muon tracking in MUCH setup

Design Parameters	Value
Pseudo-rapidity coverage	$1.15 < \eta < 3.65$
Max. height × width	5.15 m × 6.25 m
Gas volume	1.36 m³
Active detector area	113.4 m ²
Material budget	< 5 % per layer
Number of modules	216
Number of readout channels	329728
Max. signal collection time	300 ns
Max. hit rate / channel (MB Au+Au at 10 AGeV)	≤ 100 kHz
Max. occupancy (cent. Au+Au at 10 AGeV)	< 10 %
Space point resolution	~ 300 µm
π-Suppression (90% e-efficiency, $p \ge 1.5 \text{ GeV}/c$)	20
dE/dx-Resolution ($p > 1 GeV/c$)	≤ 30 %

- 4-layer detector setup
- Modular structure

Working Principle

- Radiator: boxes with stacks of PE foam foil
- Readout: Multi-Wire Proportional Chamber (MWPC) with segmented pad plane
- Counting gas: Xe/CO₂ (85/15) \Rightarrow high γ absorption cross section
- Thin MWPC (3.5+3.5 mm / 5 mm drift) \Rightarrow fast signal collection

High-Rate Performance Studies with an X-Ray Tube

- Exploring the CBM design values of 100k particle/cm²/s with X-induced rates (X-ray tube): in-house tests of the inner-zone prototypes
- Control systematic effects on the system (X-ray tube, detector and FEE) by observing the geometrical scaling of the reconstructed yield of hits as function of the distance: source (X-ray tube)-target (TRD)
- Cluster rate(x) = $I_{off} + I_0 \cdot A(L, I, dL, dI) / (R_0 x)^2$
- Preliminary: system is described by the geometrical scaling for rates within CBM specifications and above, especially for low detector gain (lower U_{anode})

Carbon fibre support fram

Foil entrance window

Cathode wire ledge Anode wire ledge

Distance ledge

Pad plane

High-Rate Tests at the CERN Gamma-Irradiation Facility (GIF⁺⁺)

- In-beam test: MWPC and self-triggered CBM-DAQ chain at the CERN-GIF, ionisation load up to CBM design values
- 14 TBq ^{137}Cs γ source as base load (flexible attenuation system) and μ beam from CERN-SPS
- Observable:
 µ detection efficiency w.r.t. detector load
- Analysis of data and detector behaviour ongoing, simulation of energy deposition

