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Interaction with radiation &
  external fields; collisions.
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 mass and mass polarization

External fields

I

Pertu
rbation theory
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Atomic excitations in relativistic heavy-ion collisions
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J. Eichler and T. Stöhlker, Phys. Reports 439 (2007) .



  

Atomic excitations in relativistic heavy-ion collisions

X-ray emission due to:
Radiative electron capture (RR & REC)
Characteristic transitions (Ly-a & K-a)
Dielectronic recombination
Coulomb excitation & ionization
 ... 
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 Fundamental (relativistic) interactions in strong Coulomb field ?
 Virtual vs. real photon fields ?

Lyman-a1

2 Probe for high-multipole components     

3 Can one „measure“ multipole fields ?     

4 Lyman-α vs. K-α emission                       

5 K-α emission after Coulomb excitations
...  

A. Surzhykov et al.  PRL 88 (2002) 153001.
S. Fritzsche et al. PRL  103 (2009) 113001.
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  Indeed, these and many other processes occur in atomic, plasma and astro     
     physics as well as at various places elsewhere.

  How much help can atomic theory provide ? -- Which tools are available ?
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Atomic processes
  Photon emission & transition probabilities
  Photoexcitation, ionization & recombinat.
  Auger emission & di-electr. recombination
  Rayleigh-Compton scattering
  Multiphoton (de-) excitation, ...

Interactive High-Level Language

JAC
Jena Atomic Calculator

A Julia implementation for 
atomic computations.

Open-source applications
in physics, science and

 technology.

Atomic properties
  Hyperfine splitting & representation
  Zeeman splitting; Lande factors
  Isotope shifts, atomic for factors
  Plasma shifts, α-variations
  Approximate Greens function, ...

Atomic cascades
  Average singe-configuration approach

  Multiple-configuration approach

  Incorporation of shake-up & shake-off

  Ion & electron distributions, ...

Atomic time-evolution
  Liouville equation for statistical tensors

        & atomic density matrices

  Atoms in intense light pulses

  Angle- & polarization-dependent

        observables

Atomic responses
  Field-induced processes & ionization

  High-harmonic generation

  Particle-impact processes

Semi-empirical estimate
  Weak-field ionization rates

  Stopping powers

  Plasma Stark broadening, ...

https://www.github.com/OpenJAC/JAC.jl

Jena Atomic Calculator (JAC)              

JAC ... Jena atomic calculator provides tools for performing atomic (structure) calculations at various 
degrees of complexity and sophistication. ... JAC also facilitates interactive computations, the 
simulation of atomic cascades, the time-evolution of statistical tensors as well as various semi-empirical 
estimates of atomic properties. In addition, the Jac module supports the graphical representation of level
energies, electron and photon spectra, radial orbitals and others.

Central questions to any new implementation:

 Is a common (and community) platform for atomic computations desirable ?

 How can we benefit from a good ‘core machinery’ ?

 How simple and user-friendly can it be made ?

 How to combine productivity & performance in developing such a platform ?
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Jena Atomic Calculator (JAC)
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JAC ... Jena atomic calculator provides tools for performing atomic (structure) calculations at various 
degrees of complexity and sophistication. ... JAC also facilitates interactive computations, the 
simulation of atomic cascades, the time-evolution of statistical tensors as well as various semi-empirical 
estimates of atomic properties. In addition, the Jac module supports the graphical representation of level
energies, electron and photon spectra, radial orbitals and others.

Example:      Einstein A and B coefficients for the Fe X spectrum;                 

                             Fe9+   [Ne] 3s2 3p5 →  [Ne] 3s 3p6  +  3s2 3p4 3d

   > wa = Atomic.Computation("Fe X: Einstein",  NuclearModel(26.), …, 
                    [Configuration("[Ne] 3s^2 p^5")], …,
                    [Configuration("[Ne ] 3s 3p^6"), Configuration("[Ne] 3s^2 3p^4 3d") ], …,
                    Radiative, Radiative.Settings([E1, M2], [UseCoulomb, UseBabushkin], false, false, ...  )
   > perform(wa)

        ... in perform('computation: SCF', …)   
        Compute CI matrix of dimension 1 x 1 for the symmetry 1/2^+ ...   done.        
        Compute CI matrix of dimension 1 x 1 for the symmetry 3/2^+ ...   done.
        ...

GUI ? 

(graphical user interface)
GUI ? 

(graphical user interface)

https://www.github.com/OpenJAC/JAC.jl
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  Generation of start orbitals

  Computation of angular coefficients (on fly)

  Self-Consistent-Field (SCF) iteration

  Set-up and diagonalization of Hamiltonian matrix

  Breit, QED, many-body corrections, …

  Compute all (many-electron) transition amplitudes

https://www.github.com/OpenJAC/JAC.jl
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Promising applications of vortex beams:

  Optical tweezer (‘single-beam gradient force trap’)
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  Higher-dimensional quantum information encoding.

  High-resolution spectroscopy.

  Sensitive optical detection.

  Realization and study of quantum walks.
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Plane waves
             –  simple, well-known und frequently applied solutions

  Propagation of electro-magnetic waves;

  in particular, light.

  Free quantum particles

  ...

ipf.uni-stuttgart.de

Quantum numbers:    k, l



  

 

Twisted (vortex) beams
             –  waves with helical wave fronts and orbital angular momentum

  Laguerre-Gaussian beams

  Bessel beams

  Vector beams

Superposition of Bessel beams

Quantum numbers:     kz, kperp, m, l 

Topological charge, winding number, 

projection of OAM, ...



  

Our focus: Bessel beams
                –  with well-defined AM, monochromatic and non-diffractive

Vector potential:

Fullfilles Helmholtz's equation.
Probabilities of individual OAM components:

Quantum numbers:     kz, kperp, m
g
, l 
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Bessel beams  vs.  plane waves
             –  representation in position, phase and momentum
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Twisted light
   Twisted photons carry not only spin angular momentum (SAM) but also        

      orbital angular momentum (OAM) along their propagation direction.

   OAM of light implies a spatial distribution of the em field and a phase            
      dependence of the vector potential.

   Wave functions:      eimφ     are eigenfunctions of     Lz =  ∂ / ∂φ

   SAM and OAM can be separated only in the paraxial approximation.

   Topological charge, m:     z-projection of the OAM of the beam.

   A vortex state can propagate freely and does not require any medium nor    
      interaction with other particles and fields to retain its ring-like profile.

  Usable in optical tweezers,  high-resolution spectroscopy and high-               
      bandwidth information encoding.

                                       →   new degree of freedom for light
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Photoabsorption of twisted-wave photons
             – by atoms with well-defined impact parameter

b
Gives rise to an impact-parameter dependent cross section:

Mf=+1

Mf=0

Mf=-1

m=1

m=3

A. Surzhykov et al., PRA 90 (2015) 013403.

Bessel beam
hv = 10 eV,  = 45o

m
t
 = 1 and m

t
 = 3

Characteristic length 
scale of oscillation
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...  

Remarkable effects of the „twist“ on localized targets;

No dependence on m, if averaged over macroscopic targets.

Remarkable effects of the „twist“ on localized targets;

No dependence on m, if averaged over macroscopic targets.



  

Photoionization with twisted light
                        – elementary and very well studied process 

Non-relativistic perturbation theory:

b

Final state in the continuum.

First analysis
 No  fp   nor  m  dependence in the photoelectron spectra if averaged over all impact parameters !

 Only opening angle  k  matters.

 Reversed viewpoint:    Can we make the energy flux in the beams visible ?



  

Photoionization with twisted light
                        – How to make the energy flux visible within the beam ? 

Poynting vector in cylindrical coordinates:

A. Surzhykov et al., PRA 94 (2016) 033420.

Obviously, the Poynting vector depends on the 
position within the helical wave-front!

→  How does this dependence of P affect       
         the photo-ionization of localized target ? 



  
Shift in the minimal

emission angle

A. Surzhykov et al., PRA 94 (2016) 033420.

Photoionization with twisted light
                        – How to make the energy flux visible within the beam ? 



  

Two-color ATI with twisted XUV and intense laser light
                        – spectral and angular emission of photoelectrons 

Amplitude for two-color ATI in 
strong-field approximation:

Ionization probability & circular dichroism:
Flip of the helicity of laser light !



  

Two-color ATI with twisted XUV and intense laser light
                        – spectral and angular emission of photoelectrons 

Seven different dichroism signals:

3 magnetic QN    →   8 - 1 = 7  ratios

D. Seipt et al., PRA 94 (2016) 053420.



  

Two-color ATI with twisted XUV and intense laser light
                        – spectral and angular emission of photoelectrons 

D. Seipt et al., PRA 94 (2016) 053420.

Circular dichroism:

Again, details of the photon-matter interactions depend on the target size.

Angular distribution of
 the sidebands for

 different target sizes.



  

I.    Ionization
II.   Propagation
III. Recombination

P. B. Corkum, PRL 71 (1993) 1994.

Tailored orbital angular momentum in HHG
                        – with bi-circular Laguerre-Gaussian beams



  

Intensity profile

Phase front

Gaussian  vs.  Laguerre-Gaussian beams
                                            – “twisted” beams with a spatial phase dependence 



  

HHG with linearly-polarized twisted light
                                             

- π

0

π

C. Hernandez-Garcia, et al., Phys. Rev. Lett. 111 (2013) 083602.

G. Gariepy, et al., Phys. Rev. Lett. 113 (2014)153901.

R. Geneaux, et al., Nature Communications 7 (2016) 12583.

 Only odd H;  even harmonics are suppressed.
 Linear scaling of OAM with harmonic order.
 SAM limited by |s| = 1.

spatial phase dependence

SAM:  ±1

Linear scaling of OAM

HH are also linearly-polarized …
as suggested by equal probabilities.



  

HHG with bi-circular (plane-wave) LG beams
                                  

D. B. Milosevic, et al., PRA 61 (2000) 063403 (2000).

K. M. Dorney, et al., PRL 119 (2017) 063201. 

  Superposition of two circularly-polarized fields: 

  Now, every third harmonic is supressed.

  For each harmonic just one m + n, since SAM = ±1!
  LG with l = 0  refers to a Gaussian beam.

SAM:  ±1



  

HHG with  bi-circular (twisted) LG  beams
                                                –  spatial phase distribution for LG beams with l ≠ 0

13th13th 14th14th

W. Paufler et al., PRA 98 (2018)  011401 (R).

 Superposition of two circular fields: 

 Now, every third harmonic is supressed.

 What about the OAM of the higher harmonics ?

 No simple scaling of OAM with order of the HHG. spatial phase distribution in far-field



  

OAM of the 13th and 14th harmonic
                                                                                                   – simple arithmetics 
 

13th harmonic

 14th harmonic

SAM:  ±1



  

HHG with bi-circular LG beams:   Selection rules
                                              

W. Paufler et al., PRA 98 (2018) 011401 (R).

→ High harmonics with tailored orbital angular momentum.

 OAM of each harmonic therefore depends on the OAM of the incident pulses.

 Can we select the OAM of the qth harmonic ? 

                                                            … yes:   by choosing the OAM’s of the incident fields.



  

  Accurate atomic computations are needed for a wide range of applications.

  New experimental facilities require an accurate but still simple handling of 
      (a large number of) levels and amplitudes of different kinds.

   JAC: User-friendly atomic computations of different complexity.

   „Twisted“ photons and beams provide new insights into the elementary         
          light-matter interaction processes. 

   This understanding is complementary to the nonlinear and relativistic             
           mechanisms and gives us an alternative route to the control of quantum   
           processes.
 

   Angular momentum as additional degree of freedom  →  new applications.

   Where shall we go next  ?? 
           →  Rayleigh & Delbrück scattering of twisted light. 
           →  Scattering processes at higher intensities.
           →  Selectivity of HHG, phase matching, …
        

Summary & Outlook 
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