Effect of tensor interactions via high-momentum neutron-transfer reaction

X. Wang^A, H.J. Ong^A, Y. Ayyad^B, J. Benlliure^C, H. Fujioka^D, H. Geissel^{E,F}, J. Gellanki^G,

C.L. Guo^H, E. Haettner^F, M.N. Harakeh^{F,G}, R.S. Hayano^I, C. Hornung^E, K. Itahashi^J,

N. Kalantar-Nayestanaki^G, R. Kanungo^K, R. Knoebel^{E,F}, K. Miki^B, I. Mukha^F, T. Myo^L,

T. Nagae^D, T. Neff^F, T. Nishi^I, C. Nociforo^F, K. Ogata^A, D.Y. Pang^H, S. Pietri^F,

A. Prochazka^F, C. Rappold^F, M.P. Reiter^F, J.-L. Rodriguez-Sanchez^C, C. Scheidenberger^{E,F},

H. Simon^F, B. Sitar^M, P. Strmen^M, B.H. Sun^H, K. Suzuki^N, I. Szarka^M, M. Takechi^O,

Y. Tanaka^I, I. Tanihata^{A,H}, S. Terashima^H, H. Toki^A, H. Weick^F, J.S. Winfield^F, X.D. Xu^F,

D. Yamakami^D, J.W. Zhao^H

^ARCNP, Osaka University, ^BMichigan State University/NSCL, ^CUniversity Santiago de Compostela, ^DKyoto University, ^EUniversity Giessen, ^FGSI Helmholtzzentrum für Schwerionenforschung GmbH, ^GUniversity of Groningen, ^HBeihang University, ¹University of Tokyo, ^JRIKEN Nishina Center, ^KSaint Mary's University, ^LOsaka Institute of Technology, ^MComenius University Bratislava, ^NStefan Meyer Institute, ^ONiigata University

Tensor interactions are important nuclear interactions acting between nucleons in atomic nuclei. Theoretical studies have pointed out the importance of the tensor interactions in understanding the structure of ⁹⁻¹¹Li [1], and predicted high-momentum components, in particular at around 2 fm⁻¹ [2-4].

To understand the effect of tensor interactions on nuclear structure, we measured the cross-section of (p,d) reaction on the "doubly-closed-shell" nucleus, ¹⁶O, at the GSI Helmholtzzentrum für Schwerionenforschung GmbH. We performed 0-degree measurements and compared with previous work [5], in which the deuterons were detected at finite scattering angles between 10 and 25 degrees. To cover the transfer momentum around 2 fm⁻¹, we used proton beam at energies varying at 403, 604, 907 and 1209 MeV. Missing-mass spectra of the residual ¹⁵O nucleus were reconstructed from the momenta of deuterons that were measured by the projectile fragment separator (FRS) as a spectrometer. We used a POM (Mylar) foil as the Oxygen target and ^{nat}C target to subtract the contributions of the ¹²C contaminant in POM. We also have measured the proton elastic scattering with CD₂ target and compared with Monte Carlo simulations to understand the optics and to determine the transmission efficiency of the FRS. The results are consistent with the previous work [5] and hence show that the effect of reaction mechanisms is negligible. The results provide evidence of the enhanced high-momentum neutrons due to tensor interactions. In this talk, we will give experimental details and present the results.

References

- [1] T. Myo, et al., Phys. Rev. C 76 (2007) 024305.
- [2] T. Neff, H. Feldmeier, Nucl. Phys. A 713 (2003) 311.
- [3] W. Horiuchi, Y. Suzuki, Phys. Rev. C 76 (2007) 024311.
- [4] R. Schiavilla, et al., Phys. Rev. Lett. 98 (2007) 132501.
- [5] H.J. Ong et al., Phys. Lett. B 725 (2013) 277.