TENSOR FORCE PROMPTS NEW MAGIC NUMBERS

ISAO TANIHATA SCHOOL OF PHYSICS, BEIHANG UNIVERSITY RCNP, OSAKA UNIVERSITY

Story

- Tensor force "short" range correlation high momentum nucleon binding energy
- Expression in shell model space
 - Mixing of 2p-2h states with high momentum
- Experimentally
 - (p,d) reaction
 - (p,pd) reaction
- Difference of tensor blocking in *N*~*Z* nuclei and neutron rich nuclei
 - Tensor blocking is the most important ingredient for saturation property of nuclear matter
 - Tensor blocking in shell model space and a difference between stable and neutron rich nuclei.
- Changes of magic numbers
 - Qualitative consideration on the shell orbitals

Tensor force in nuclei

- Pion exchange interaction includes tensor force with same amplitude as central forces.
- Tensor interaction produce correlated pairs of short distance. It therefore produce highmomentum nucleons.
- This high-momentum pair give large binding energy similar to D-wave in deuteron.

Expression of tensor correlated pairs in shell model

Tensor force in 4He

- V_T contribute from higher *l* orbitals and convergence is slow.
- 2p-2h excitations of p-n pair under △S=2, △L=2 provide tensor energies.

- Tensor interactions give ~60 MeV of potential energy.
- Remember L=1 excitation already gives >10 MeV of potential energy.

Configurations up to *l***=**1

 $\Psi(^{4}\mathrm{He}) = \sum_{i=1}^{6} a_{i} \Phi_{i} ,$

Configurations up to *l***=**1

 $\Psi(^{4}\mathrm{He}) = \sum_{i=1}^{6} a_{i} \Phi_{i} ,$

$$T. Myo, K. Kato, and K. Ikeda, PTP 113, (2005) 763.$$

$$\Phi_{1} = (0s_{1/2})_{00}^{4}, \qquad V_{T} [MeV]$$

$$\Phi_{2} = [(0s_{1/2})_{01}^{2}, (0p_{1/2})_{01}^{2}]_{00}, \qquad 0.37$$

$$\Phi_{3} = [(0s_{1/2})_{10}^{2}, (0p_{1/2})_{10}^{2}]_{00}, \qquad 14.49$$

$$\Phi_{4} = [(0s_{1/2})_{01}^{2}, (0p_{3/2})_{01}^{2}]_{00}, \qquad 0.19$$

$$\Phi_{5} = [(0s_{1/2})_{10}^{2}, (0p_{3/2})_{10}^{2}]_{00}, \qquad 1.67$$

$$\Phi_{6} = [(0s_{1/2})_{10}^{2}, [(0p_{1/2})(0p_{3/2})]_{10}]_{00} \rightarrow 0.09$$

Configurations up to *l***=**1

				T. Myo, K. Kato, and K. Ikeda, PTP 113	3 , (2005) 763.
$\Psi(^{4}\text{He}) = \sum_{i=1}^{6} a_{i} \Phi_{i} ,$		Φ_1	=	$(0s_{1/2})_{00}^4$,	V _T [MeV]
		Φ_2	=	$\left[(0s_{1/2})_{01}^2, (0p_{1/2})_{01}^2\right]_{00}$,	→ 0.37
		Φ_3	=	$\left[(0s_{1/2})_{10}^2, (0p_{1/2})_{10}^2\right]_{00}$,	→ 14.49
		Φ_4	=	$\left[(0s_{1/2})_{01}^2, (0p_{3/2})_{01}^2\right]_{00}$,	→ 0.19
		Φ_5	=	$\left[(0s_{1/2})_{10}^2, (0p_{3/2})_{10}^2\right]_{00} , $	→ 1.67
		Φ_6	=	$\left[(0s_{1/2})_{10}^2, \left[(0p_{1/2})(0p_{3/2}) \right]_{10} \right]_{00}$	→0.09
	2s1d		_	2s1d	
4He:	$1p_{1/2}$ $1p_{3/2}$ $1s_{1/2}$	$-\phi_n\phi$	_	+ $1p_{1/2}$ $1p_{3/2}$ $1s_{1/2}$ p n n	
		~10%			

Configurations up to *l*=1

6

T. Myo, K. Kato, and K. Ikeda, PTP 113, (2005) 763.

$$\Psi(^{4}\text{He}) = \sum_{i=1}^{6} a_{i} \Phi_{i} , \qquad \Phi_{1} = (0s_{1/2})^{4}_{00} , \qquad V_{T}[\text{MeV}]$$

$$\Phi_{2} = [(0s_{1/2})^{2}_{01}, (0p_{1/2})^{2}_{01}]_{00} , \qquad 0.37$$

$$\Phi_{3} = [(0s_{1/2})^{2}_{10}, (0p_{1/2})^{2}_{10}]_{00} , \qquad 14.49$$

$$\Phi_{4} = [(0s_{1/2})^{2}_{01}, (0p_{3/2})^{2}_{01}]_{00} , \qquad 0.19$$

Highest spin orbital $(j_{>})$ in a major shell is not used for the tensor interaction. An example is $1p_{3/2}$ orbital in ⁴He and deuteron.

In more general p-n pairs from $(nlj)^2$ configuration to $(n+1,l+1,j)^2$ or $(n+1,l-1,j)^2$

Tensor Optimized Shell Model,

Myo, Toki, Ikeda, Kato, Sugimoto, PTP 117 (2006)

Selection rule of the tensor interaction

¹²C do not suffer blocking of tensor!

INPC 2019.07.29-8.2 Glasgow

INFC 2019.07.29-8.2 Glasgow

Blocking and Opening occurs simultaneously and keep the binding per nucleon to be almost constant.

• Pion exchange produces the Central and the Tensor Forces.

- Attraction by the tensor force is gained by a transition of a *pn* pair of to a higher-momentum state under selection rule $\Delta S=2$, $\Delta L=2$.
- Tensor interaction is blocked when nucleon occupy higher orbitals and thus nuclear saturation occurs.

Experiment to detect high-momentum correlated nucleons

¹⁶O(p,d)¹⁵O and ¹⁶O(p,pd)¹⁴N studies

Pick up of high-momentum neutron

1. Compare the momentum amplitude of normal shell neutrons and high-momentum neutrons

2. Compare the probability of (S, T)=(1, 0) and (0, 1) pairs.

Momentum distribution of nucleons

Recent Data at FRS at 400, 600, 900, 1200 MeV at 0° scattering angle

Xuan Wang: Talk in this meeting on Friday.

CCBA calculation by Ogata

Recent Data at FRS at 400, 600, 900, 1200 MeV at 0° scattering angle

Xuan Wang: Talk in this meeting on Friday.

CCBA calculation by Ogata

¹⁶O(p,pd)¹⁴N

A measurement of correlated pn pairs in nuclei with large relative momenta.

Knock out

T of residual nuclei = T of internal "d"

T of residual nuclei = 0 or 1 : independent from T of "d"

J. Y. Grossiord et al., Phys. Rev. C 15 (1977) 843.

¹⁶O(p, pd)¹⁴N reaction at a large momentum transfer E_p=400 MeV

Terashima et al. Phys. Rev. Lett. 121, 242501 (2018)

FIG. 2. The excitation energy spectrum of ${}^{16}O(p, pd)$ for $\theta_d = 8.6^{\circ}/\theta_p = 138.4^{\circ}$ with the total and individual fitting results shown by the solid and dashed lines, respectively.

When high-momentum neutron is picked up, most of the "d" was S=1 and T=0 pair consistent with tensor correlated pair.

Change of magic numbers

Studies with RIB changed the Map of Nuclei

What is the difference between stable and neutron rich nuclei?

Symmetric nuclei

Blocking and Opening occur simultaneously.

What is the difference between stable and neutron rich nuclei?

 $1f_{7/2}$ _____

$1s_{1/2}$ p n 280

Only tensor blocking occurs.

Why magic numbers *N*=8 and *N*=20 disappear in neutron-rich nuclei?

Originally a large gap but the tensor blocking effectively bring p_{1/2} much loosely bound and mixes with sd-shell. Blocking does not occur for s_{1/2} until proton fills p_{1/2}.

Originally the energy gap is larger than ~4 MeV but the tensor blocking effectively bring d_{3/2} much loosely bound and mixes with fp-shell. For loosely bound nuclei not only f_{7/2} but also p_{3/2} comes closer. f_{7/2} has no blocking effect and p_{3/2} does not until proton fills d_{3/2}.

How are new magic numbers N=6,14,16,32,34 made?

energy gaps become more than factor of two larger due to the tensor blocking.

Summary

- Importance of the tensor interaction is reviewed.
- Effects of recently observed high-momentum pn pair are considered in relation to the nuclear structures.
- Importance of the tensor blocking, that is significant in neutron rich nuclei, are discussed.
- A new model of nuclei "Tensor Blocking Shell Model" is introduced and used to examine new behaviors of neutron rich nuclei.

Summary

- Importance of the tensor interaction is reviewed.
- Effects of recently observed high-momentum pn pair are considered in relation to the nuclear structures.
- Importance of the tensor blocking, that is significant in neutron rich nuclei, are discussed.
- A new model of nuclei "Tensor Blocking Shell Model" is introduced and used to examine new behaviors of neutron rich nuclei.

Conclusion

- All new magic numbers appeared in neutron rich nuclei are strongly affected by the tensor blocking.
- Disappearance of traditional magic numbers and non binding of ⁸He and ²⁸O are consistent with the tensor blocking.
- Sudden extension of dripline in F is understood.
- A peculiar change of GS configurations is understood.

Collaborators

- H. Toki, RCNP Osaka Univ., Osaka, Japan
- S. Terashima, IRCNPC Beihang Univ., Beijing, China
- H.-J. Ong, RCNP Osaka Univ., Osaka Japan

Collaborators

- H. Toki, RCNP Osaka Univ., Osaka, Japan
- S. Terashima, IRCNPC Beihang Univ., Beijing, China
- H.-J. Ong, RCNP Osaka Univ., Osaka Japan

Thank you for your attention