

Multi-layer plastic-scintillator-based solid active proton target for inverse-kinematics experiments

Tran Dinh Trong

RCNP, Osaka University, Japan

Outline

3/6/20

- Concept and prototype
- Test experiment
- Data analysis
- Summary

Tensor interactions

Tensor interactions:

- Fundamental nuclear interaction that provide attractive force
- Plays an importance role in pion exchange.
- Evidences of tensor interactions:
 - \checkmark Admixtures of D-wave in d, α
 - Deviation of magnetic moments (of double-closed+1 nuclei) for the Schmidt values
 - Varying magic number in neutron-rich nuclei
- Experimental probes:
 - H.J. Ong et al., PLB 725, 277 (2013),

Probing effect of tensor interactions in ¹⁶O via (p, d) reaction

• S. Terashima et al., PRL121, 242501 (2018),

Dominance of Tensor Correlations in High-Momentum Nucleon Pairs Studied by (p,pd) Reaction

Tran Dinh Trong

RCNP

Motivation

p.4

Verification of tensor force effect in ⁶He, ⁶Li

Theoretical prediction: possible different contribution of tensor interaction in ⁶He and ⁶Li nuclei.

Experiment probe:

via high-momentum-transfer (p,d) reactions in inverse kinematics at GSI, Germany.

Experimental conditions:

- > Medium to High Energy Secondary Beam (400 800 MeV / $u \sim 2 \text{ fm}^{-1}$)
- > Beam intensity ~ 10^7 Hz
- Hydrogen target of sufficient thickness
- What need to measurement:
 - \checkmark excitation energy with sufficient resolution (⁵He, ⁵Li)

Target selection

Limitations:

- Reaction cross section: < 0.2 mb/sr.</p>
- > Beam intensity: $<10^7$ Hz.
- Resolution of detectors.
- Thickness and counting-rate:

CH ₂ [mm]	0.001	1	10
Rate [par./hr]	0.06	60	600
CH ₄ at 1atm gas equiv.[mm]	0.1	850	8500

- Thickness and excitation-energy resolution:
 - Reacted position are needed
- Gases active target ?
 - MAIKo, AT-TPC, etc... are not suitable

=> A solid active target is requested

after reaction point { p(⁶He,d) at 800MeV/u }

 $\Delta E (^{4}He) = 1.15 \text{ MeV/mm}$

♦ After: ∆E (d)

Unreacted event:

RCNP

 $E_{loss} = constant = 12.4$ (MeV)

Based on the difference of energy-loss before and

• Before: ΔE (⁶He) = 1.24 MeV/mm ΔE_h = 1.24 MeV/mm

= 1.88 MeV/mm **]**

Reacted event:

 $E_{loss}(z) = 1.24 z + 3.03(10-z) (MeV)$

Normal pile-up event (Unreacted + reacted):

 $E_{loss}(z) = 12.4 + 1.24 z + 3.03(10-z) (MeV)$

Reaction position is not correct for pile-up event

•

*

Concept and prototype

Concept and prototype

Scintillators Segmented target into multi-layers of 1mm with separated readout to remove pile-up events. ⁶He Readout by 16-channel Linear Array PMT, ⁶He H10515B-20, by Hamamatsu MAPMT 5-layer Plastic Scintillators Supports MAPMT Expected: position resolution < layer thickness (FWHM)

⁶He

⁴He

⇒Ζ

RCNP

Test Exper<u>iment</u>

Test Experiment: proton-proton elastic scattering

Reaction position via Si-CsI telescopes

- Using total energy loss in both telescopes
- Using strip ID to correct angular dependence
- Reaction position reconstructed from total corrected energy.
- Simulation reproduced the experimental data very well.

Beam rate dependence

Using total energy loss

Rate dependence:

- Pile-up becomes serious at 1MHz
- □ At 3MHz we cannot determine reaction position
- □ At 2MHz the gain of PMT start to change

RCNP

Data analysis

3/6/20

Reaction position via relative energy loss

Using different energy in neighboring layers

 Pile-up has been solved
The uncertainties appear around borders of adjacent layers

Comparison on rate dependence

Si-Csl telescope

Rate dependence

Si-<u>Csl</u> telescope

Gain shift

RCNP

Data analysis

Resolution end Efficiency

Effect of intrinsic resolution

- □ Energy intrinsic resolution at 75kHz is 18% (in sigma).
- Intrinsic resolution dependence of depth resolution was studied using simulation.

Summary

- A prototype of multilayer plastic-scintillator based active proton target was constructed.
- Development experiment was performed with proton-proton elastic scattering at 70 MeV.
 - + Depth resolution at 3 MHz beam rate was found to be less than 0.31 mm (σ) with detection efficiency of 92%.
 - ✦ Gain shift was observed at rate above 1 MHz, a booster for PMT is needed for going to higher rate.

D.T. Tran^{a,b}, S. Terashima^c, H.J. Ong^{a,*,1}, K. Hirakawa^a, Y. Matsuda^d, N. Aoi^a, M.N. Harakeh^{e,f}, M. Itoh^d, T. Kawabata^g, A. Kohda^a, S.Y. Matsumoto^h, T. Nishiⁱ, J. Okamoto^d, I. Tanihata^{a,c}

^a Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

^b Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 10000, Viet Nam

^c School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

^d Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Miyagi 980-8578, Japan

^e KVI Center for Advanced Radiation Technology, University of Groningen,, 9747 AA Groningen, The Netherlands

^f GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany

^g Department of Physics, Osaka University, Osaka 560-0043, Japan

^h Department of Physics, Kyoto University, Kyoto 606-8502, Japan

ⁱ RIKEN Nishina Center, Saitama 351-0198, Japan

Nuclear Inst. and Methods in Physics Research, A 959 (2020) 163514

Thank you for your attentions !