Fission studies at R3B using the SOFIA setup

NUSTAR week 2019

Gif -sur-Yvette, France September 25 2019

DE LA RECHERCHE À L'INDUSTRIE

A. Chatillon (CEA, DAM, DIF) for the R³B/SOFIA collaboration

SOFIA@R3B Some results from 2012-2014 Proposal for 2020 and after ? Summary & Conclusion 00

Why studying fission at R3B?

•00

I - Large physics case: applications, r-process, understanding the reaction for models

SOFIA@R3B: correlation of several fission observables for a complete description

BARRIER YIELDS: Y(Ai,Zi) **FVOLUTION WITH E*** PROMPT EMISSION (□) → (□) → (□) □ (□) ○ (○ **PROBABILITY**

Why studying fission at R3B?

II - To avoid the limitation due to direct kinematics

DIRECT KINEMATICS: FF WITH LOW RECOIL ENERGY IN THE LAB. FRAME

Beam = neutrons, light charged particles, γ & Target = actinides

- Isotopic yields are incomplete
- nuclear charge from energy loss measurement: \Rightarrow limitation to Z \leq 42
- mass from total energy measurement:
 - ⇒ resolution around 4 mass unit FWHM
- targets limited to long-lives nuclei
- very low efficiency due to the 4- π emission
 - ⇒ low statistics

3/16

NIISTAR week SOFIA: Fission@R3R A Chatillon

Why studying fission at R3B?

SOFIA@R3B

II - To avoid the limitation due to direct kinematics...

INVERSE KINEMATICS AT 700 A.MeV: (Z,A) IDENTIFICATION FROM Δ E-B ρ -ToF

Radioactive beam & Surrogate reactions

- FRS + R3B : (Z,A) identification of the compound nucleus and both fission fragments after neutron emission
- $\Delta Z = 0.35$ charge unit FWHM
- $\Delta A = 0.5$ to 0.8 mass unit FWHM

◆□▶ ◆□▶ ◆□▶ ◆□■ ◆○○○

- total prompt neutron multiplicity from $A_{\rm CN} = A_{\rm FF1} A_{\rm FF2}$
- Use of radioactive beams: broad range of fissioning nuclei
- Use of surrogate reactions to produce the compound nucleus:
 - \Rightarrow coulex induced fission: accurate measurement of Y(A,Z) and u_{tot} at $\langle E_{\mathrm{CN}}^* \rangle \sim$ 14 MeV
- ⇒ (p,2pf): first experiment in 2020 to measure E* in coincidence: Complementary experiment!
- ullet very high geometrical efficiency: around 90 % (from 236 U(γ ,f) data in 2014)

SOFIA@R3B

Two experiments in 2012 and 2014 at R3B with ALADIN

- 2012: Coulex-induced fission in the uranium and thorium regions (J. Taieb et al.)
- 2012: Spallation-fission of ²⁰⁸Pb (J. Benlliure *et al.*)
- 2014: Coulex-induced fission of ²³⁶U (J. Taieb et al.)

SOFIA@R3B

Accurate yields along the uranium chain

- Error bars are shown in figures
 - \Rightarrow Elemental yields: $\sigma_{\rm asym} \leq 1\%$ and $\sigma_{\rm sym} \leq 2\%$
 - \Rightarrow Isotopic yields: $\sigma_{\rm light} \leq 2\%$, $\sigma_{\rm sym} \leq 3\%$ and $\sigma_{\rm heavy} \leq 5\%$

J.-F. Martin, J. Taieb et al., Eur. Phys. J. A 51 (2015) 541

E. Pellereau, J. Taieb et al., Phys. Rev C 95 (2017) 054603

NUSTAR week SOFIA: Fission@R3B A. Chatillon 6/16

From asymmetric to symmetric fission along the thorium chain (I)

SOFIA@R3B

- cea
- \bullet First observed from Y(Z) measurement in the 90's (K.-H. Schmidt et al., NPA 665 (2000) 221)
- ullet SOFIA: measurement of Y(Z), Y(N), Y(A) and prompt-neutron multiplicity

A. Chatillon, J. Taieb et al., Phys. Rev C 99 (2019) 054628

NUSTAR week SOFIA: Fission@R3B A. Chatillon 7/16

From asymmetric to symmetric fission along the thorium chain (II)

- ullet Probe the scission configuration thanks to $\langle
 u_{
 m tot}
 angle (Z)$
 - $\Rightarrow \langle \nu_{\rm tot} \rangle(Z)$ increases with the Q₂-deformation of the fission-fragments
- Prompt neutron multiplicity drops at symmetry

SOFIA@R3B

new compact scission configuration at symmetry for the light thorium totaly different from the known elongated symmetric scission mode in uranium region

NIISTAR week SOFIA: Fission@R3B A Chatillon 8/16

²⁰⁸Pb(p,f) at 500 A.MeV

- Application: characterize the spallation neutron sources and secondary beam facilities
- Understanding of the dynamics in fission through the dissipation parameters
- ullet Isotopic identification of both FF: $Z_1 + Z_2$ are obtained unambigously in coincidence with
 - ⇒ fission cross section
 - ⇒ neutron excess in the fission fragments

Ground to saddle dynamics

- cross section
- J. L. Rodriguez-Sanchez et al., Phys. Rev C 91 (2015) 064616

Saddle to scission dynamics

and after ?

- neutron excess
- J. L. Rodriguez-Sanchez et al., Phys. Rev C 94 (2016) 061601 (R)

NUSTAR week SOFIA: Fission@R3B A. Chatillon 9/16

Accepted proposal for Fission@R3B (s455)

n FF:

10/16

- 1. Temperature dependance of shell effects in the PES and energy sharing between FF:
- \Rightarrow (p,2p) induced fission of ²³⁸U primary beam
- 2. Fission barrier around N=126 in Po isotopes:
- \Rightarrow (p,2p) induced fission of radioactive beams
- 3. Symmetric to asymmetric fission in neutron deficient A=180-210 nuclides:
- ⇒ coulex induced fission of radioactive beams

Setup based on a common basis

(p,2p) induced fission of primary ²³⁸U beam. J. Benlliure et al.

Damping of the shell effects with E^* & Energy sharing between FF

- ullet AIM: Evolution of the fission observables as a function of E^* : from $B_{
 m f}$ to 80 MeV
- ullet Yields and prompt-neutron multiplicity depends on E^* and $(A_{
 m CN}, Z_{
 m CN})$
- BUT: Difficult to study such effect in direct kinematics
- SOLUTION: Couple R3B/SOFIA with LH2 target, the Si tracker and CALIFA
 ⇒ ²³⁸U(p,2pf): tracking of the protons to measure E*
 ⇒ R3B/SOFIA: isotopic identification of both FF and total prompt-neutron multiplicity
- NeuLAND can be used to measure the prompt-neutron multiplicity per fragment
- Describe the evolution of the shell effects as a function of the excitation energy
- How the additional excitation energy is shared between the FF?

NUSTAR week SOFIA: Fission@R3B A. Chatillon 11/16

(p,2p) induced fission of polonium around N=126. D. Müchner et al.

Fission barrier: strong test of the models

Fission barriers are known.

SOFIA@R3B

- ⇒ for few nuclides only
- ⇒ mostly close to the stability valley
- And for the exotic nuclei?
 - ⇒ key data for the r-process cycling simulation
 - ⇒ but no experimental data
 - ⇒ rely on models
 - ⇒ but strong divergence of the predictions
- New measurements are mandatory to qualify the models

Mamdouh et al., Nucl. Phys. A 679, 337 (2001)

12/16

NIISTAR week SOFIA: Fission@R3R A Chatillon

Coulex-induced fission of neutron deficient pre-actinides. J. Taieb et al.

Yields and $\langle \nu_{\rm tot} \rangle$ from symmetric fission (Ac) down to asymmetric fission (Hg)

- 70's: role of the FF shell effects in asymmetric fission in heavy actinides
- 90's: first experiment using inverse kinematics at relativistic energy:
 - ⇒ transition from asymmetric to symmetric fission along the thorium
 - ⇒ expected symmetric fission for lighter nuclei
- 2010: unexpected asymmetric fission in Hg

SOFIA@R3B

- 2020: characterization of the symmetric to asymmetric fission with SOFIA@R3B
 - ⇒ deformation at scission of the symmetric and symmetric fission modes
 - ⇒ underlying p- and n- shell effects of these fission modes
 - \Rightarrow pairing effect in these systems having a high fission barrier

NUSTAR week SOFIA: Fission@R3B A. Chatillon 13/16

and after ?

- · Accurate yields and prompt-neutron multiplicity of Pu and Am nuclides
 - \Rightarrow data beyond A=238
 - ⇒ important nuclides for the nuclear technology
 - ⇒ especially for the fast-neutron Gen-IV reactor
- Pu source: interest for part of the NUSTAR community
 - \Rightarrow beams around $^{132}\mbox{Sn}$ produced by fission with one order of magnitude higher than with U
 - \Rightarrow a factor 10 in the statistics...
 - \Rightarrow you should tell in case you could be interested by such a source
- ²⁴²Pu available at the Oakridge National Laboratory

and after ?

- FAIR + R3B is a unique facility for the fission studies
- Relativistic secondary beams:
 - ⇒ high intensity 1 A.GeV 238U beam
 - \Rightarrow production of a broad range of of actinides and pre-actinides
 - \Rightarrow possibility to study the fission of nuclei unreachable in direct kinematics
- R3B/SOFIA coupled to standard R3B
 - \Rightarrow identification of both fission fragments in coincidence with $\langle \nu_{\rm tot} \rangle$
 - \Rightarrow fission observable as a function of E*
- Fission@R3B can:
 - \Rightarrow probe the scission configuration
 - \Rightarrow study the p- and n- shell effects
 - \Rightarrow extract the fission barrier
 - \Rightarrow probe the fission dynamics

Thank you!

and after ?

16/16

Fission in the heavy actinides (U) region proposed by Brosa

cea

000

- 3 fission modes in the actinides region:
 - o 2 asymmetric modes: ST1 and ST2
 - o 1 symmetric mode: SL
- each fission mode:

Fission modes

- o proper path in the equipotentiel energy surface
- o different structure effects
- o different scission configurations

standard 1 (ST1)

- o quasi-spherical heavy FF
- \Rightarrow A $_{H}\sim$ 132, Z $_{H}\sim$ 50, N $_{H}\sim$ 82
- o deformed light FF

standard 2 (ST2)

- o deformed heavy FF
- \Rightarrow A_H \sim 140, Z_H \sim 54
- $\circ \ \, \text{p shell in} \ \, Q_{30}\text{-deformed} \\ \text{fragments} \\$

superlong (SL)

- o less shell influence (LDM)
- o increases with E*
- very long path

Triple-MUSIC Fission modes 2014 Setup

Fission in the heavy actinides (U) region proposed by Brosa

000

1/9

- 3 fission modes in the actinides region:
 - 2 asymmetric modes: ST1 and ST2
 - o 1 symmetric mode: SL
- each fission mode:
 - o proper path in the equipotential energy surface
 - different structure effects
 - o different scission configurations

standard 2 (ST2)

- o quasi-spherical heavy FF
- \Rightarrow A_H \sim 132, Z_H \sim 50, N_H \sim 82
- o deformed light FF

standard 1 (ST1)

o short path: compact

HIGH TKE. LOW ν

- o deformed heavy FF
- \Rightarrow A_H \sim 140, Z_H \sim 54
 - o p shell in Q₃₀-deformed fragments

INTERMEDIATE TKE

superlong (SL)

- less shell influence (LDM)
- o increases with E*
- o very long path
- large elongation

LOW TKE, HIGH ν

Yields + TKE or ν_{tot} : PROBE OF THE SCISSION CONFIGURATION

Neutron multiplicity and TKE: 235 U case

Analysis by J.-F. MARTIN (PhD)

$$\langle TKE \rangle$$
 vs (N_{FF}, Z_{FF})

- high TKE for ST1 mode ⇒ compact configuration
- low TKE for SL mode ⇒ large deformation

$$\langle \nu_{tot} \rangle$$
 vs (N_{FF},Z_{FF})

- ullet high $\langle
 u_{tot}
 angle$ when TKE is low
 - ⇒ deformation energy is converted into excitation energy in the fission fragments

70

neutron number N

90 100
 Fission modes
 2014 Setup
 Triple-MUSIC
 2016

 ○○
 ○○
 ○○
 ○○

Setup upstream ALADIN

 Fission modes
 2014 Setup
 Triple-MUSIC
 2016

 ○○
 ○
 ○
 ○

Setup downstream ALADIN

4/9

List of the detectors (2014), resolution are given FWHM

COS	

•	3×MWPCs	MWPC0 beam	MWPC1 FFs	MWPC2 FFs
	dimension	200×200mm ²	200×200mm ² 900×600mm ²	
	x resolution	$200 \mu m$	200μ m	$300 \mu \mathrm{m}$
	y resolution	1 mm	1 mm	1 mm

- Twin-MUSIC: energy loss and angle of both fission fragments
 - \Rightarrow dimensions: (2×) 110×220×400 cm³
 - \Rightarrow resolutions: $\Delta Z \sim 0.2$, $\Delta x \sim 60 \mu m$, $\Delta \theta \sim 0.3 mrad$
- Triple-MUSIC: energy loss and angle of the secondary beam
 - \Rightarrow dimensions: (3×) 85×85×150 cm³
 - \Rightarrow resolutions: $\Delta Z{\sim}0.2$, $\Delta x{\sim}40\mu m$
- Scintillators at S2
 - \Rightarrow dimensions: 200 \times 32 \times 1 mm³
 - \Rightarrow resolution: $\Delta x \sim 3$ mm
- Time-of-flight wall
 - \Rightarrow dimensions: (28×) 660×32×5 mm³
 - \Rightarrow resolution: Δ y \sim 3mm, Δ ToF \sim 35 ps

- Scintillators at Cave C
 - \Rightarrow dimensions: $50 \times 32 \times 1.5 \text{ mm}^3$
 - \Rightarrow resolution: $\Delta x \sim 1$ mm
- Active target
 - \Rightarrow dimensions: 10 cm diameter, 2 cm gap

 Fission modes
 2014 Setup
 Triple-MUSIC
 2016

 ○○
 ○○
 ●
 ○○

Secondary beam identification: new Triple-MUSIC and MWPC

- minimization of the material in the beam path
 - gazeous detector if possible
 - if not, as thin as possible detectors (degrador at S2, plastic at S2 and cave C)
- why a Triple-MUSIC ?
 - three independant energy losses measurement in one detector
 - avoid mis-identification of secondary beam, due to the charge states
- coupled with an absolute position measurement (MWPC)

Secondary beam identification: new Triple-MUSIC and MWPC

NUSTAR week SOFIA: Fission@R3B A. Chatillon 6/9

Results from 2016: Sn setting, 450 A MeV

• peak / valley = 200

Xe beam test, MDPP16 Thrs 500 Beam 6k/s

 Fission modes
 2014 Setup
 Triple-MUSIC

 00
 00
 0

Results from 2016: Sn setting, 450 A MeV

- peak / valley = 200
- some charge state tail in between peaks

•00

NUSTAR week SOFIA: Fission@R3B A. Chatillon 7/9

 Fission modes
 2014 Setup
 Triple-MUSIC
 2016

 00
 000
 0
 ●00

Results from 2016: Sn setting, 450 A MeV

- peak / valley = 200
- some charge state tail in between peaks
- $\Delta Z \sim 0.23$ charge unit (FWHM) for low rate

NUSTAR week SOFIA: Fission@R3B A. Chatillon 7/9

Results from 2016: Si setting

- $\bullet \ \mathsf{peak} \ / \ \mathsf{valley} = 1000$
- $\bullet \ \Delta Z = 0.19 \ \text{charge unit (FWHM)}$

NUSTAR week SOFIA: Fission@R3B A. Chatillon 8/

Results from 2016: C beam

9/9

