

Indirect measurements of neutron-induced cross sections at storage rings

- B. Jurado¹, M. Grieser², A. Henriques¹, J. Glorius³, D. Denis-Petit¹, R. Reifarth⁴, L. Audouin⁵, A. Chatillon⁶, L. Gaudefroy⁶, Ch. Langer⁴, Y. Litvinov³, L. Mathieu¹, V. Méot⁶, O. Roig⁶, J. Taieb⁶, I. Tsekhanovich¹ and the NucAr collaboration
 - 1) CENBG, Bordeaux, France
 - 2) MPIK, Heidelberg, Germany
 - 3) GSI, Darmstadt, Germany
 - 4) University of Frankfurt, Germany 5)IPN, Orsay, France
 - 5) CEA/DAM/DIF Bruyeres le Chatel, France

Neutron-induced reactions

Step 1: Formation

$$\sigma_{n,\gamma}^{A}(E_n) = \sigma_{formation}^{A+1}(E_n) \cdot P_{\gamma}^{n}(E_n)$$

Need for neutron cross sections of short-lived nuclei

Synhtesis of heavy elements: slow and rapid neutron-capture processes

Reactor physics: fast reactors, transmutation, new fuel cycles

		Bk 238 144 s		Bk 240 5 m	Bk 241 4.6 m	Bk 242 7 m	Bk 243 4.5 h	Bk 244 4.35 h	Bk 245 4.90 d	Bk 246 1.80 d	Bk 247 1380 a	Bk 248 23.7 h >9 a	Bk 249 320 d
		€ βsf		βst	ε γ 262; 152; 211	SI g	? a 6.575; 6.543 y 755; 946	α 6.662; 6.620 γ 892; 218; 922 g	51 α 5.888; 6.150 γ 253; 381 e g	ε γ 799; 1081; 834; 1124 e	α 5.531; 5.710; 5.688 γ 84; 265 g	β ⁻ 0.9 ε γ 551 β ⁻ ? ε?	β^{-} 0.1; α 5.419; 5.391; st γ (327; 308) σ 700; $\sigma_f \sim$ 0.1
		Cm 237	Cm 238 2.4 h	Cm 239 3 h	Cm 240 27 d	Cm 241 32.8 d	Cm 242 162.94 d	Cm 243 29.1 a	Cm 244 18.10 a	Cm 245 8500 a	Cm 246 4730 a	Cm 247 1.56 · 10 ⁷ a	Cm 248 3.40 · 10° a
		α 6.656	ε α 6.558; 6.503 γ 55	έ γ 188 9	a 6.291; 6.248 sf	a 5.939 y 472; 431; 132 0 0	sf α 6.113; 6.069 sf; g γ (44); e ⁻ α - 20 σ _f ~ 5	Sf a 5.785; 5.742 e; sf; g y 278; 228; 210; e" or 130; or 620	α 5.805; 5.762 sf; g γ (43); e ⁻ σ 15; σ ₁ 1.1	α 5.361; 5.304 st; g γ 175; 133 σ 350; σ; 2100	α 5.386; 5.343 sf; g γ (45); e ⁻ σ 1.2; σ _f 0.16	α 4.870; 5.267 γ 402; 278 g σ 60; σ ₁ 82	α 5.078, 5.035 sf; η; e ⁻ , g u 2.6; η 0.36
Am 234 2.32 m	Am 235 10.3 m	Am 236	Am 237	Am 238	Am 239 11.9 h	Am 240 50.8 h	Am 241 432.2 a	Am 242	Am 243 7370 a	Am 244	Am 245 2.05 h	Am 246	Am 247 22 m
€ βsf	ε α 6.457 γ 291; 224; 270; 739; 749	6 a 6.15 ? α 6.15 ? γ 583; γ 719; 654; 713 880; 320	S1 ε α 6.042 γ 280: 438: 474; 909 9	81 α 5.94 γ 963; 919; 561; 605	Sf (a 5.774 y 278; 228 e ⁻ g	\$1 4 5.378 7 986; 889	α 5.488; 5.443 st; γ 60; 26 e ⁻ ; g; σ 60 + 640 σ ₁ 3.15	Sf (49). e ⁻ α 5.206 γ (42) st; γ (49) e ⁻ g σ 1700 σ ₁ 5900 σ ₁ 2100	81 a 5.275; 5.233 st; + 75; 44 e 75 + 5 e ₁ 0.079	Sf B 1.5 β 0.4 γ 744γ (1084) 898: θ g 154ε σγ 1600 σγ 2200	β ⁺ 0.9 γ 253; (241; 296) Θ ⁺ ; g	Sf 87 1.2; 87 9679; 9 1079; 205; 799; 154; 1062 756	β [—] γ 285; 226 e [—]
Pu 233 20.9 m	Pu 234 8.8 h	Pu 235 25.3 m	Pu 236 2.858 a	Pu 237 45.2 d	Pu 238 87.74 a	Pu 239	Pu 240 6563 a	Pu 241	Pu 242 3.750 · 10 ⁵ a	Pu 243 4.956 h	Pu 244 8.00 · 10 ⁷ a	Pu 245	Pu 246 10.85 d
ε α 6.31 γ 235; 535	ε α 6.202; 6.151 γ; e ⁻	Sf α 5.85 γ 49; (756; 34) e ⁻	α 5.768; 5.721 sf; Mg 28 γ (48; 109); e ⁻ σ ₁ 160	α 5.334 γ 60: e ⁻ ιτ ₁ 2300	Sf α 5.499; 5.456 sf; Si; Mg γ (43; 100); e ⁻ σ 510; σ ₁ 17	Sf α 5.157; 5.144 sf; γ (52) e ⁻ ; m σ 270; σ ₁ 752	sf α 5.168; 5.124 sf; γ (45) e¬: g σ 290; σ ₁ ~0.058	Sf β = 0.02; g α 4.896 γ (149); e = σ 370; σ ₁ 1010	α 4.901; 4.856 st; γ (45) e ⁻ ; g σ 19; σ ₁ < 0.2	β" 0.8 γ 84; g σ<100; σ ₁ 200	α 4.589; 4.546 st; γ e ⁻ σ 1.7	Sf β=0.9; 1.2 γ 327; 580; 308; g σ 150	β ⁻ 0.2; 0.3 γ 44; 224; 180 m ₁
Np 232 14.7 m	Np 233 36.2 m	Np 234 4.4 d	Np 235 396.1 d	Np 236 22.5 h 1.54-105 s	Np 237	Np 238 2.117 d	Np 239 2.355 d	Np 240 7,22 m 65 m	Np 241 13.9 m	Np 242	Np 243 1.85 m	Np 244 2.29 m	
ε γ 327; 820; 867; 864; 282 ε	ε α 5.54 γ (312; 299; 547)	ε; β ⁺ γ 1559; 1528; 1602 σ ₁ ~900	ε; α 5.025; 5.007 γ (26; 84); e ⁻ g; σ 160 + ?	ε; β 7 0.5 γ (642; 688); ε 104; ε 9; σγ 2700 9; σγ 3000	α 4.790; 4.774 γ 29; 87; e ⁻ σ 170; σ _ξ 0.020	β ⁻ 1.2 γ 984; 1029; 1026; 924; e ⁻ g; σ; 2600	β 0.4; 0.7 γ 106; 278; 228; e g σ 32 + 19; σ ₁ < 1	β"2.2 β"0.9 γ 555; γ 566; 597 974; e" 601; lγ; g 448; g	β ⁻ 1.3 γ 175; (133) g	β" 2.7 γ 736; γ 786; 780; 945; 1473 159 9 9	β ⁻ γ 288 g	β ⁺ γ 217; 681; 163; 111 9	152
U 231 4.2 d	U 232 68.9 a	U 233 1.592 · 10 ⁵ a	U 234 0.0054	U 235 0.7204	U 236 120 ns 2.342-10 ⁷ a	U 237 6.75 d	U 238 99.2742	U 239 23.5 m	U 240 14.1 h		U 242 16.8 m		
ε; α 5.456; 5.471; 5.404 γ 26; 84; 102 e ⁻ ; σ ₁ -250	α 5.320; 5.262 Ne 24; γ (58; 129); e ⁻¹ σ 73; σ ₁ 74	α 4.824; 4.783 Ne 25; γ (42; 97); e ⁻ σ 47; σ; 530	2.455 · 10 ⁵ a α 4.775; 4.723; sl Mg 28; Ne; γ (53; 121) e ⁻ ; α 96; α ₁ 0.07	26 m 7.038·10 ⁸ a 4.398; sf Ne; y 186 e 7.95; cy 586	α 4.494; 4.445; 5f; γ (49; 113) e ⁻ ; σ 5.1	β ⁻ 0.2 γ 60; 208 e ⁻ σ~100; σ ₁ <0.35	298 ns 4.468·10 ⁹ a hy 2514 a 4.198 st 1824 257; y (50.4) e 27; y 32.4	β ⁻ 1.2; 1.3 γ 75; 44 σ 22; σ ₁ 15	β ⁻ 0.4 γ 44; (190) e ⁻ m		β ⁻ γ 68; 58; 585; 573 m		
Pa 230 17.4 d	Pa 231 3.276 · 10 ⁴ a	Pa 232 1.31 d	Pa 233 27.0 d	Pa 234	Pa 235 24.2 m	Pa 236 9.1 m	Pa 237 8.7 m	Pa 238 2.3 m	Pa 239 1.8 h				
ε; β ⁻ 0.5 α 5.345; 5.326 γ 952; 919; 455; 899; 444; α; 1500	α 5.014; 4.952; 5.028; Ne 24; F 23? γ 27; 300; 303; e σ 200; σ; 0.020	β 0.3. 1.3; ε γ 969; 894; 150; e σ σ 460; σ 1500	β ⁻ 0.3; 0.6 γ 312; 300; 341; e ⁻ σ 20 + 19; σγ < 0.1	β*2.3 β*0.5: γ (1001; 1.2 767) γ 131; 881; γ (74); e* 883; e* σγ <500 σγ <5000	β 1.4 γ 128 – 659 m	β ⁻ 2.0; 3.1 γ 642; 687; 1763; g βsf ?	β ⁻ 1.4; 2.3 γ 854; 865; 529; 541	β ⁻ 1.7; 2.9 γ 1015; 635; 448; 680 9	β ⁻ γ 522-681		150		
Th 229 7880 a	Th 230 7.54 · 10 ⁴ a	Th 231 25.5 h	Th 232 100	Th 233 22.3 m	Th 234 24.10 d	Th 235 7.1 m	Th 236 37.5 m	Th 237 5.0 m	Th 238 9.4 m				
α 4.845; 4.901; 4.815; γ 194; 211; 86; 31; e ⁻	α 4.687; 4.621 γ (68; 144); e ⁻ Ne 24; σ 23.4	β ⁻ 0.3; 0.4 γ 26; 84	1.405 · 10 ¹⁰ a a 4.013; 3.950; st y (64); e	β ⁺ 1.2 γ 87; 29; 459; e ⁺ π 1500: π 15	β ⁻ 0.2 γ 63; 92; 93 e ⁻ ; m	β ⁻ 1.4 γ 417; 727;	β ⁻ 1.0 γ 111; (647;	R=	β ⁻ γ 89				

Very difficult or even impossible to measure with standard techniques →difficulty to produce and handle the needed targets!

Solution: measurements in inverse kinematics...

...but free-neutron targets are not yet available!

Surrogate-reaction method in inverse kinematics

Several reactions can be studied in the same experiment!

Several reactions can be studied in the same experiment!

Validity of the surrogate-reaction method

$$\sigma_{n,decay}^{A}(E^*) = \sigma_{formation}^{A+1}(E^*) \cdot P_{decay}^{surro}(E^*)$$

1. Neutron-induced and surrogate reaction must lead to the formation of a compound nucleus :

Decay only depends on E^* , J and π !

2.
$$P_{decay}^{surro}(E^*) = P_{decay}^n(E^*)$$

But P_{decay} can depend on J and π , and the populated J and π can be different

for the n-induced and surrogate reactions

Not possible to say a priori if a reaction meets these conditions.

Data obtained with the surrogate method need to be compared to neutron-induced data!

Representative results

3He+238U→4He+237U ⇔ n+236U→237U

Good agreement for fission probabilities but strong disagreement for γ -emission probabilities. Not understood, need systematic studies involving nuclei with different nuclear structure and different reactions to define how to use surrogate reactions when no neutron data exist.

Measurement of fission and gamma-emission probabilities in direct kinematics

Beam-like residues

Limits:

- Unavailability of targets (radioactive samples)
- Target contaminants and target support
- \textbf{P}_{γ} : discrimination of $\gamma \mbox{'s}$ from fission fragments, very low detection efficiency
- P_n: measurement of low-energy neutrons and neutron efficiency

Advantages of Inverse kinematics:

-Access to very short-lived nuclei

-Detection of heavy residues

BUT!

- Required E* resolution ~ few 100 keV,
 E*=f(E_{beam}, E_{target_like}, θ)
- Target contaminants and target windows have to be avoided

STORAGE RINGS!

Advantages of heavy-ion storage rings

The CRYRING at GSI/FAIR

- Beam cooling → Excellent energy and position resolution of the beam, restored after each passage through the target, negligible straggling effects and energy-loss effects
- Use of ultra-thin in-ring gas-jet targets ~10¹³/cm².
 Effective target thickness increased by ~10⁶ due to revolution frequency (at 10 A MeV)
- Pure targets, pure beams, (no backing, no contaminants)

electron cooler

Challenge: Detectors in Ultra-High Vacuum (10⁻¹¹-10⁻¹² mbar)!

Set-up at the CRYRING

Detailed Geant 4 simulations: excitation-energy resolution

Detailed Geant 4 simulations: separation of beam-like residues

Conclusions

- •Surrogate reactions in inverse kinematics are the most promising indirect method to infer neutron cross sections of short-lived nuclei which are crucial for nuclear astrophysics and applications in nuclear technology.
- •CRYRING is the ideal place to carry out high-resolution surrogate reaction studies in inverse kinematics:
 - → E* resolution of few100 keV
 - → No target contaminants or backing, pure beams
 - →Simultaneous measurement of all decay probabilities with ~ 100% efficiency
- •Numerous measurements with stable and radioactive beams will be possible
- •Applications for funding submitted, TDR will be prepared for end 2019, submission of proposal to next PAC