Indirect measurements of neutron-induced cross sections at storage rings - B. Jurado¹, M. Grieser², A. Henriques¹, J. Glorius³, D. Denis-Petit¹, R. Reifarth⁴, L. Audouin⁵, A. Chatillon⁶, L. Gaudefroy⁶, Ch. Langer⁴, Y. Litvinov³, L. Mathieu¹, V. Méot⁶, O. Roig⁶, J. Taieb⁶, I. Tsekhanovich¹ and the NucAr collaboration - 1) CENBG, Bordeaux, France - 2) MPIK, Heidelberg, Germany - 3) GSI, Darmstadt, Germany - 4) University of Frankfurt, Germany 5)IPN, Orsay, France - 5) CEA/DAM/DIF Bruyeres le Chatel, France ### **Neutron-induced reactions** ### **Step 1: Formation** $$\sigma_{n,\gamma}^{A}(E_n) = \sigma_{formation}^{A+1}(E_n) \cdot P_{\gamma}^{n}(E_n)$$ ## Need for neutron cross sections of short-lived nuclei Synhtesis of heavy elements: slow and rapid neutron-capture processes ## Reactor physics: fast reactors, transmutation, new fuel cycles | | | Bk 238
144 s | | Bk 240
5 m | Bk 241
4.6 m | Bk 242
7 m | Bk 243
4.5 h | Bk 244
4.35 h | Bk 245
4.90 d | Bk 246
1.80 d | Bk 247
1380 a | Bk 248
23.7 h >9 a | Bk 249
320 d | |--|--|--|---|--|---|---|--|--|--|---|---|--|---| | | | €
βsf | | βst | ε
γ 262; 152; 211 | SI
g | ? a 6.575; 6.543
y 755; 946 | α 6.662; 6.620
γ 892; 218; 922
g | 51 α 5.888; 6.150
γ 253; 381
e
g | ε
γ 799; 1081;
834; 1124
e | α 5.531; 5.710;
5.688
γ 84; 265
g | β ⁻ 0.9
ε
γ 551 β ⁻ ?
ε? | β^{-} 0.1; α 5.419;
5.391; st
γ (327; 308)
σ 700; $\sigma_f \sim$ 0.1 | | | | Cm 237 | Cm 238
2.4 h | Cm 239
3 h | Cm 240
27 d | Cm 241
32.8 d | Cm 242
162.94 d | Cm 243
29.1 a | Cm 244
18.10 a | Cm 245
8500 a | Cm 246
4730 a | Cm 247
1.56 · 10 ⁷ a | Cm 248
3.40 · 10° a | | | | α 6.656 | ε
α 6.558; 6.503
γ 55 | έ
γ 188
9 | a 6.291; 6.248
sf | a 5.939
y 472; 431; 132
0
0 | sf α 6.113; 6.069
sf; g
γ (44); e ⁻
α - 20
σ _f ~ 5 | Sf a 5.785; 5.742
e; sf; g
y 278; 228;
210; e"
or 130; or 620 | α 5.805; 5.762
sf; g
γ (43); e ⁻
σ 15; σ ₁ 1.1 | α 5.361; 5.304
st; g
γ 175; 133
σ 350; σ; 2100 | α 5.386; 5.343
sf; g
γ (45); e ⁻
σ 1.2; σ _f 0.16 | α 4.870; 5.267
γ 402; 278
g
σ 60; σ ₁ 82 | α 5.078, 5.035
sf; η; e ⁻ , g
u 2.6; η 0.36 | | Am 234
2.32 m | Am 235
10.3 m | Am 236 | Am 237 | Am 238 | Am 239
11.9 h | Am 240
50.8 h | Am 241
432.2 a | Am 242 | Am 243
7370 a | Am 244 | Am 245
2.05 h | Am 246 | Am 247
22 m | | €
βsf | ε
α 6.457
γ 291; 224; 270;
739; 749 | 6 a 6.15 ? α 6.15 ? γ 583; γ 719; 654; 713 880; 320 | S1 ε
α 6.042
γ 280: 438: 474;
909
9 | 81 α 5.94
γ 963; 919; 561;
605 | Sf (a 5.774
y 278; 228
e ⁻
g | \$1
4 5.378
7 986; 889 | α 5.488; 5.443
st; γ 60; 26
e ⁻ ; g; σ 60 + 640
σ ₁ 3.15 | Sf (49). e ⁻ α 5.206 γ (42)
st; γ (49) e ⁻ g
σ 1700
σ ₁ 5900 σ ₁ 2100 | 81 a 5.275; 5.233
st; + 75; 44
e 75 + 5
e ₁ 0.079 | Sf B 1.5 β 0.4
γ 744γ (1084) 898:
θ g 154ε
σγ 1600 σγ 2200 | β ⁺ 0.9
γ 253;
(241; 296)
Θ ⁺ ; g | Sf 87 1.2; 87 9679; 9 1079; 205; 799; 154; 1062 756 | β [—]
γ 285; 226
e [—] | | Pu 233
20.9 m | Pu 234
8.8 h | Pu 235
25.3 m | Pu 236
2.858 a | Pu 237
45.2 d | Pu 238
87.74 a | Pu 239 | Pu 240
6563 a | Pu 241 | Pu 242
3.750 · 10 ⁵ a | Pu 243
4.956 h | Pu 244
8.00 · 10 ⁷ a | Pu 245 | Pu 246
10.85 d | | ε
α 6.31
γ 235; 535 | ε
α 6.202;
6.151
γ; e ⁻ | Sf
α 5.85
γ 49; (756; 34)
e ⁻ | α 5.768; 5.721
sf; Mg 28
γ (48; 109); e ⁻
σ ₁ 160 | α 5.334
γ 60: e ⁻
ιτ ₁ 2300 | Sf
α 5.499; 5.456
sf; Si; Mg
γ (43; 100); e ⁻
σ 510; σ ₁ 17 | Sf
α 5.157; 5.144
sf; γ (52)
e ⁻ ; m
σ 270; σ ₁ 752 | sf α 5.168; 5.124
sf; γ (45)
e¬: g
σ 290; σ ₁ ~0.058 | Sf
β = 0.02; g
α 4.896
γ (149); e =
σ 370; σ ₁ 1010 | α 4.901; 4.856
st; γ (45)
e ⁻ ; g
σ 19; σ ₁ < 0.2 | β" 0.8
γ 84; g
σ<100; σ ₁ 200 | α 4.589; 4.546
st; γ
e ⁻
σ 1.7 | Sf
β=0.9; 1.2
γ 327; 580;
308; g
σ 150 | β ⁻ 0.2; 0.3
γ 44; 224; 180
m ₁ | | Np 232
14.7 m | Np 233
36.2 m | Np 234
4.4 d | Np 235
396.1 d | Np 236
22.5 h 1.54-105 s | Np 237 | Np 238
2.117 d | Np 239
2.355 d | Np 240
7,22 m 65 m | Np 241
13.9 m | Np 242 | Np 243
1.85 m | Np 244
2.29 m | | | ε
γ 327; 820;
867; 864; 282
ε | ε
α 5.54
γ (312; 299;
547) | ε; β ⁺
γ 1559; 1528;
1602
σ ₁ ~900 | ε; α 5.025;
5.007
γ (26; 84); e ⁻
g; σ 160 + ? | ε; β 7 0.5
γ (642;
688); ε 104; ε 9; σγ 2700 9; σγ 3000 | α 4.790; 4.774
γ 29; 87; e ⁻
σ 170; σ _ξ 0.020 | β ⁻ 1.2
γ 984; 1029;
1026; 924; e ⁻
g; σ; 2600 | β 0.4; 0.7
γ 106; 278;
228; e g
σ 32 + 19; σ ₁ < 1 | β"2.2 β"0.9
γ 555; γ 566;
597 974;
e" 601;
lγ; g 448; g | β ⁻ 1.3
γ 175; (133)
g | β" 2.7
γ 736; γ 786;
780; 945;
1473 159
9 9 | β ⁻
γ 288
g | β ⁺
γ 217; 681;
163; 111
9 | 152 | | U 231
4.2 d | U 232
68.9 a | U 233
1.592 · 10 ⁵ a | U 234
0.0054 | U 235
0.7204 | U 236
120 ns 2.342-10 ⁷ a | U 237
6.75 d | U 238
99.2742 | U 239
23.5 m | U 240
14.1 h | | U 242
16.8 m | | | | ε; α 5.456;
5.471; 5.404
γ 26; 84; 102
e ⁻ ; σ ₁ -250 | α 5.320; 5.262
Ne 24;
γ (58; 129); e ⁻¹
σ 73; σ ₁ 74 | α 4.824; 4.783
Ne 25;
γ (42; 97); e ⁻
σ 47; σ; 530 | 2.455 · 10 ⁵ a
α 4.775; 4.723; sl
Mg 28; Ne; γ (53; 121)
e ⁻ ; α 96; α ₁ 0.07 | 26 m 7.038·10 ⁸ a 4.398; sf Ne; y 186 e 7.95; cy 586 | α 4.494;
4.445;
5f; γ (49;
113)
e ⁻ ; σ 5.1 | β ⁻ 0.2
γ 60; 208
e ⁻
σ~100; σ ₁ <0.35 | 298 ns 4.468·10 ⁹ a
hy 2514 a 4.198 st
1824 257; y (50.4)
e 27; y 32.4 | β ⁻ 1.2; 1.3
γ 75; 44
σ 22; σ ₁ 15 | β ⁻ 0.4
γ 44; (190)
e ⁻
m | | β ⁻
γ 68; 58; 585;
573
m | | | | Pa 230
17.4 d | Pa 231
3.276 · 10 ⁴ a | Pa 232
1.31 d | Pa 233
27.0 d | Pa 234 | Pa 235
24.2 m | Pa 236
9.1 m | Pa 237
8.7 m | Pa 238
2.3 m | Pa 239
1.8 h | | | | | | ε; β ⁻ 0.5
α 5.345; 5.326
γ 952; 919; 455;
899; 444; α; 1500 | α 5.014; 4.952;
5.028; Ne 24; F 23?
γ 27; 300; 303; e
σ 200; σ; 0.020 | β 0.3. 1.3; ε
γ 969; 894;
150; e σ
σ 460; σ 1500 | β ⁻ 0.3; 0.6
γ 312; 300;
341; e ⁻
σ 20 + 19; σγ < 0.1 | β*2.3 β*0.5:
γ (1001; 1.2
767) γ 131; 881;
γ (74); e* 883; e*
σγ <500 σγ <5000 | β 1.4
γ 128 – 659
m | β ⁻ 2.0; 3.1
γ 642; 687;
1763; g
βsf ? | β ⁻ 1.4; 2.3
γ 854; 865;
529; 541 | β ⁻ 1.7; 2.9
γ 1015; 635;
448; 680
9 | β ⁻
γ 522-681 | | 150 | | | | Th 229
7880 a | Th 230
7.54 · 10 ⁴ a | Th 231
25.5 h | Th 232
100 | Th 233
22.3 m | Th 234
24.10 d | Th 235
7.1 m | Th 236
37.5 m | Th 237
5.0 m | Th 238
9.4 m | | | | | | α 4.845; 4.901;
4.815; γ 194;
211; 86; 31; e ⁻ | α 4.687; 4.621
γ (68; 144); e ⁻
Ne 24; σ 23.4 | β ⁻ 0.3; 0.4
γ 26; 84 | 1.405 · 10 ¹⁰ a
a 4.013; 3.950; st
y (64); e | β ⁺ 1.2
γ 87; 29;
459; e ⁺
π 1500: π 15 | β ⁻ 0.2
γ 63; 92; 93
e ⁻ ; m | β ⁻ 1.4
γ 417; 727; | β ⁻ 1.0
γ 111; (647; | R= | β ⁻
γ 89 | | | | | Very difficult or even impossible to measure with standard techniques →difficulty to produce and handle the needed targets! ### Solution: measurements in inverse kinematics... ...but free-neutron targets are not yet available! # Surrogate-reaction method in inverse kinematics # Several reactions can be studied in the same experiment! # Several reactions can be studied in the same experiment! # Validity of the surrogate-reaction method $$\sigma_{n,decay}^{A}(E^*) = \sigma_{formation}^{A+1}(E^*) \cdot P_{decay}^{surro}(E^*)$$ 1. Neutron-induced and surrogate reaction must lead to the formation of a compound nucleus : Decay only depends on E^* , J and π ! 2. $$P_{decay}^{surro}(E^*) = P_{decay}^n(E^*)$$ But P_{decay} can depend on J and π , and the populated J and π can be different for the n-induced and surrogate reactions Not possible to say a priori if a reaction meets these conditions. Data obtained with the surrogate method need to be compared to neutron-induced data! # Representative results 3He+238U→4He+237U ⇔ n+236U→237U Good agreement for fission probabilities but strong disagreement for γ -emission probabilities. Not understood, need systematic studies involving nuclei with different nuclear structure and different reactions to define how to use surrogate reactions when no neutron data exist. # Measurement of fission and gamma-emission probabilities in direct kinematics Beam-like residues #### Limits: - Unavailability of targets (radioactive samples) - Target contaminants and target support - \textbf{P}_{γ} : discrimination of $\gamma \mbox{'s}$ from fission fragments, very low detection efficiency - P_n: measurement of low-energy neutrons and neutron efficiency Advantages of Inverse kinematics: -Access to very short-lived nuclei -Detection of heavy residues ### **BUT!** - Required E* resolution ~ few 100 keV, E*=f(E_{beam}, E_{target_like}, θ) - Target contaminants and target windows have to be avoided # STORAGE RINGS! # Advantages of heavy-ion storage rings #### The CRYRING at GSI/FAIR - Beam cooling → Excellent energy and position resolution of the beam, restored after each passage through the target, negligible straggling effects and energy-loss effects - Use of ultra-thin in-ring gas-jet targets ~10¹³/cm². Effective target thickness increased by ~10⁶ due to revolution frequency (at 10 A MeV) - Pure targets, pure beams, (no backing, no contaminants) electron cooler Challenge: Detectors in Ultra-High Vacuum (10⁻¹¹-10⁻¹² mbar)! ### Set-up at the CRYRING ## Detailed Geant 4 simulations: excitation-energy resolution ## Detailed Geant 4 simulations: separation of beam-like residues # **Conclusions** - •Surrogate reactions in inverse kinematics are the most promising indirect method to infer neutron cross sections of short-lived nuclei which are crucial for nuclear astrophysics and applications in nuclear technology. - •CRYRING is the ideal place to carry out high-resolution surrogate reaction studies in inverse kinematics: - → E* resolution of few100 keV - → No target contaminants or backing, pure beams - →Simultaneous measurement of all decay probabilities with ~ 100% efficiency - •Numerous measurements with stable and radioactive beams will be possible - •Applications for funding submitted, TDR will be prepared for end 2019, submission of proposal to next PAC