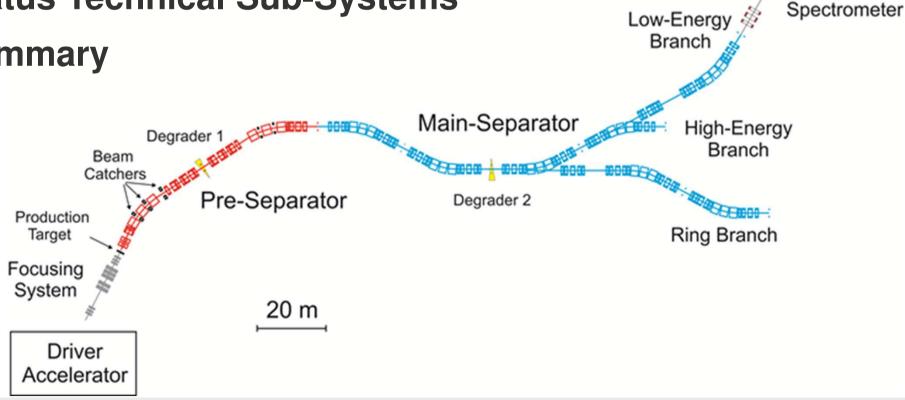


Super-FRS Project Report

M. Winkler NUSTAR Week 2019, Gif-sur-Yvette, September 25–27, 2019

1



Energy Bunche

Magnetic

Outline

- 1) Project Review (and Objectives)
- 2) Civil Construction
- 3) Installation Scenario
- 4) Status Technical Sub-Systems
- 5) Summary

GSI Helmholtzzentrum für Schwerionenforschung GmbH M. Winkler / Super-FRS Project Report

Sept. 25, 2019

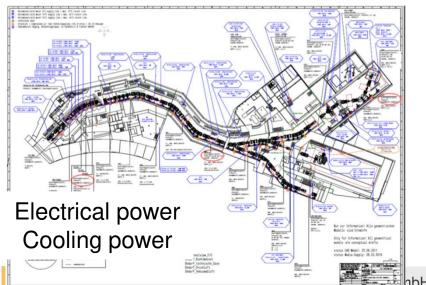
Project Review

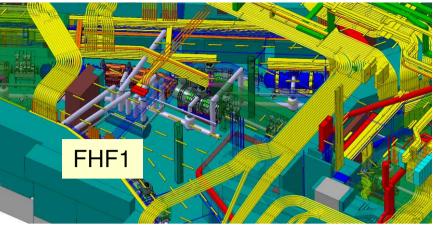
- Cost Review 2018 (CBWG)
- Project Review 2019
 - final report of Review Board presented at FAIR Council April 29, 2019 <u>https://www.gsi.de/fileadmin/oeffentlichkeitsarbeit/fair/RevBoardReport 190429 Public.pdf</u>

Recommendations:

. .

- 1) MSV should be realised in full
- 2) Civil construction should be completed without any further delays
- 3) In-kind contributions have to be monitored closely
- 4) Issue with cryogenics should be solved
- 5) The first machine to be commissioned should be Super-FRS
 - ... beginning to produce world leading since before the end of 2025 ...
 - using the SIS 18 Super-FRS beam line for commissioning ...
- 6) Spare parts need to be available


Civil Construction (FAIR South / Super-FRS)


- ✓ Tender documents (LV) FAIR CC south released
 ➢ Tender on market → award still in 2019 planned
- Technical service planning (MEP planning) running
 - Cable planning (CDB) finalized, tender in preparation
 - Rooting / collision planning ongoing
 - Installed electrical power and cooling power reviewed, CR 203

Target

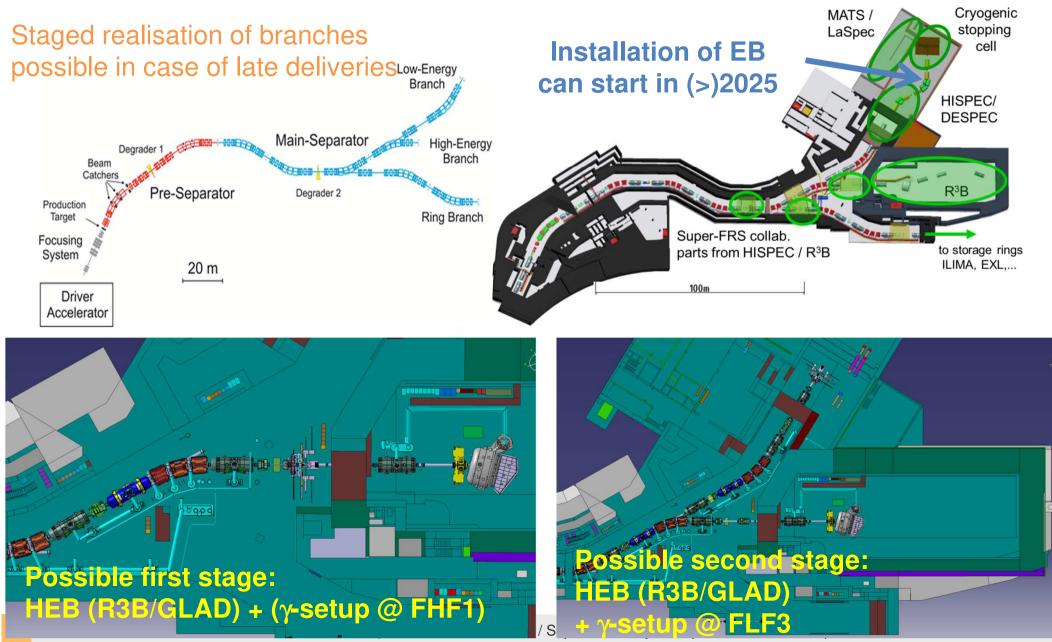
Building

- Auxiliary: vacuum exhaust, pressurized air, dry N2,
- Detector-gas system (CBWG → user task)
 - \succ Execution planning in preparation
- CPS / UPS planning to come (CBWG \rightarrow user task)

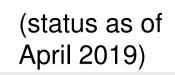
Supply Building

Tunne

Detector-gas


supply concept

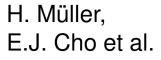
Installation Scenarios



(1st) Goal: early operation

(2nd) Goal: installation of full Super-FRS from the beginning

Procurement List (most critical items)



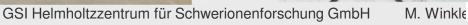
7	PSP-number	Component name	Country	Provider	Ordered to Provider / Sub Provider	Delivery date (Contracted/Planned)		Status
S-FRS	2.4.11.3.1	Target chamber	Germany	GSI	No / Yes	04.04.2022	02.05.2022	•
S-FRS	2.4.12	Local Cryogenics	Poland	WUT	No	03.03.2021	04.01.2023	•
S-FRS	2.4.2.2.3	SC multiplets	Germany	GSI	Yes / Yes	04.11.2019	21.09.2023	0
S-FRS	2.4.2.2.1	NC Multipoles	Russia ?	FAIR	No	03.10.2022	31.10.2022	0
S-FRS	2.4.11.4.1	Iron Radiation Lateral Shielding	CB8		No	16.09.2021	14.10.2021	

- Target Chamber: KVI-CART will not be available to take over the production.
- Local Cryogenics: Criticality depends on manufacturing capacities
- SC Multiplets: Float is uncertain, depends on the result of the test of first-of-series.
- NC Multipoles: Delay in M3. Criticality depends on contract negotiation.
- Iron Shielding: decision to be taken either for an IK partner or to start a FAIR tender.

Magnets I (SC Mutiplets, Overview)


Scope:

8 short multiplets, 25 long multiplets
 ➤ QS or QT, including correctors


Main characteristics:

- iron dominated, cold iron, common He bath
- warm beam pipe (38 cm inner diameter)
- individual powering, max. current <300A

FoS SM arrival @ CERN

Series production

Status / Schedule

- ✓ Contract closed 07/2015 (ASG, Genova)
- Construction phase of FoS running

FoS long production

- ✓ FAT FoS SM 01/2019
- ✓ shipment to CERN Feb. 20, 2019
- > SAT FoS SM running (Q4/2019)
- FAT FoS LM expected Q4/2019

Series production phase started

- SM #2, #3, #4 production started,
 FAT anticipated 04/20, 05/20, 06/20
- FAT last multiplet Q4/2023

Magnets (Testing@CERN, status)

K. Sugita et al.

- Collaboration between CERN and GSI
- Cold (4K) testing of the SC magnet modules at CERN
- The first short multiplet (long quadrupole and sextupole) arrived at CERN: 20. Feb
- Transport to test bench: 7. May

thermal shield blocking cool down trial (increase pressure drop, disappeared) 2 weeks break 300 water condensation + 1 week control software update temperature [K] 0 50 100 200 3 in beam pipe magnet min. Helium level gauge (pin connection swapped restart of Phase 1: to 80 K → corrected.) cool down Powering CL cool down QDS commissioning Phase 2: 80 K to 4 K Liquid helium filling @ 4K 7/11/2019 12:00:00 AM 8/25/2019 12:00:00 AM 9/14/2019 12:00:1 8/5/2019 12:00:00 AM High voltage test small helium leak to vacuum failure at 1 kV (still vacuum pump can manage it) (under investigation)

The first testing together with

- Commissioning of facility and devices etc.
- Training of the team
- Clarification of tasks in "gray zone" between GSI and CERN
- Cope with Non-conformities (Cryo interface, broken warm terminal temperature sensors, wrong polarities of magnet, voltage tap swap, ...
- Cool down trial: 10. July,
- Cool down start: 9 Aug.
- Powering start: 18. Sept.

Magnet II (SC Dipoles)

CEA Saclay H. Müller, E.J. Cho et al.

Scope

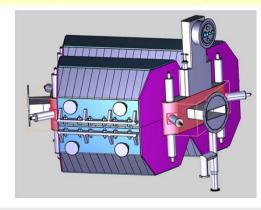
- 3 units 11°, 18 units 9.75° + support (standard)
- 3 units 9.75° + support (branched)
- 3 units 30° + support (Energy Buncher)
- Warm iron, SC coil
- Aperture ± 190 mm x ± 70 mm

Status standard sc dipole :

- ✓ Contract award Elytt (Sp) Feb. 2018
- \checkmark Design verification phase
- ✓ DRR: Q2 2018, FDR: Q4 2018
- Coil mock-up running, FDR: 9 Oct. 2019
- ➢ FOS production in preparation
- FAT of FoS expected Q1/2020

Status branched sc dipole (R&D work):

- ✓ Design phase completed
 - ≻ CDR, Spec, 3D Model released Q1/2019
- Procurement initiated

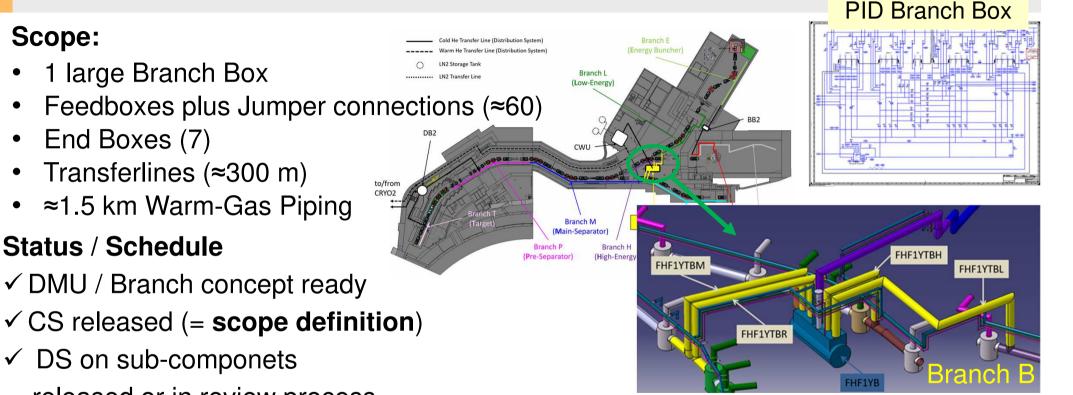

CDR branched

dipole, CEA

Status Energy Buncher dipole:

- VECC returned EOI, 12/2018
 - ➢ CDR and 3D Model provided
- Discussion with CEA on HOAI part
- Tender expected in 2021

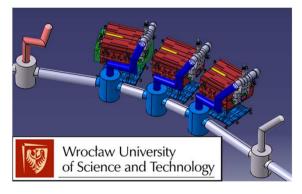
CDR EB, VECC, Q2/19 partly to be redesigned


Gor neimnoitzzentrum für Schwenonemorschung GmbH

M. Winkler / Super-FFion roject nepot

most critical WP in respect of component availability for installation-window

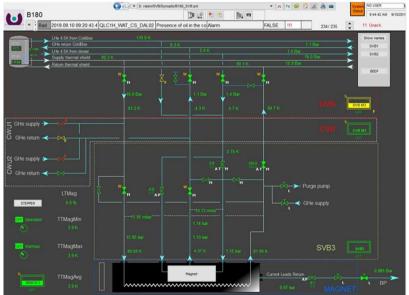
Super-FRS Local Cryogenics

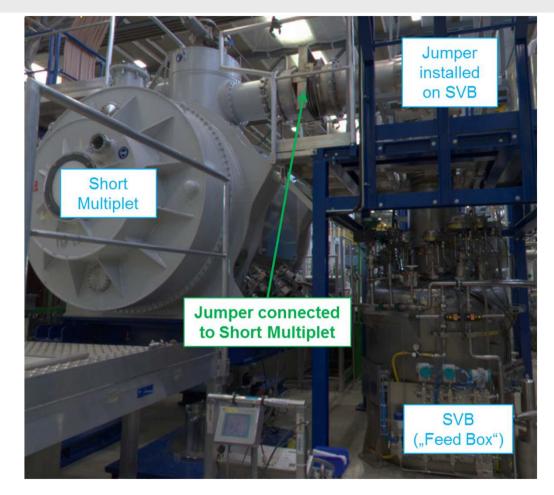


released or in review process

- IKC draft in Poland for review , design work started by WUST
- Additional in-kind partner: BINP will develop Branch Box, further contribution to be agreed

old dipole FB concept: *following Jumper interface*




WUST proposal: *FB following magnet symmetry*

Super-FRS Local Cryogenics (Cryo Facility @ CERN)

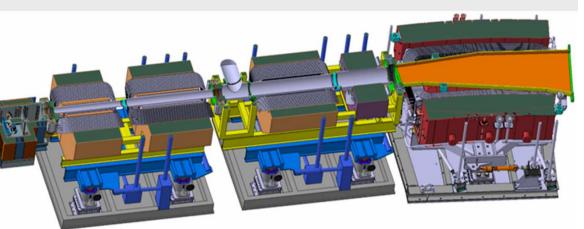
- SAT of Jumpers without magnets (warm and cold performance tests) successful.
- B180 control system operational. Further tests of Jumpers (without magnet) possible if needed.

GSI Helmholtzzentrum für Schwerionenforschung GmbH

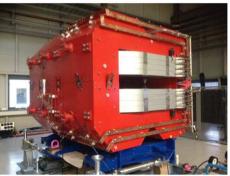
Magnets IV (Radiation Resistant Magnets)

Scope:

- NC magnets using MIC cable
- WP1: 3 dipole magnets
 (prototype dipole built and tested)
- WP2: 3 quadrupoles & 2 sextupoles
- Dedicated support frame, released
- Remote connectors and alignment


Status / Schedule

- ✓ WP1: CC signed 04/2019;
- \checkmark MIC procured, in-house
- CDR scheduled for CW 48/19 at BINP
- research contract on dipol chamber development signed 09/2019
- ✓ WP2: BINP will conduct R&D phase
 - ✓ research contract signed 09/2019
 - conceptual design expected 03/2020;
 - decision on IKC expected for Q1/2019

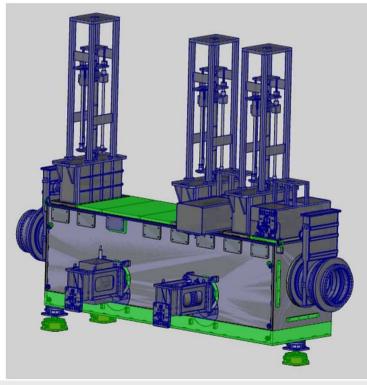

> otherwise tender required

H. Leibrock, T. Blatz et al.

NC dipole

kick-off

MIC cable procured stored at GSI ready for delivery to BINP S. Purushotaman, I. Mukha, J. Kurdal et al.



Vacuum System

- vacuum standard: centralized buying GSI
- main in-kind provider is BINP

Focal planes chambers


- ✓ Contract signed 04/2019, (21 chambers)
- ✓ FoS CDR released 09/2019
- ➢ FoS chamber expected Q2/2020

GSI Helmholtzzentrum für Schwerionenforschung GmbH M.

SC Dipole vacuum chambers

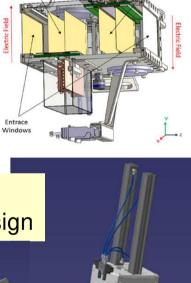
- ✓ Contract Signed (straight exit)
- ✓ kick-off done, 09/2019
- ➢ FoS chamber expected Q3/2020

Under negotiation with BINP

- NC magnet chambers (research contract for NC dipole chamber signed)
- SC Dipole vacuum chambers (Branching)
- Pumping chamber
- Beam pipes (specs still missing)
- Energy Buncher dipoles chambers
- Adapter flanges
- Window Flange
- Supports for vacuum elements

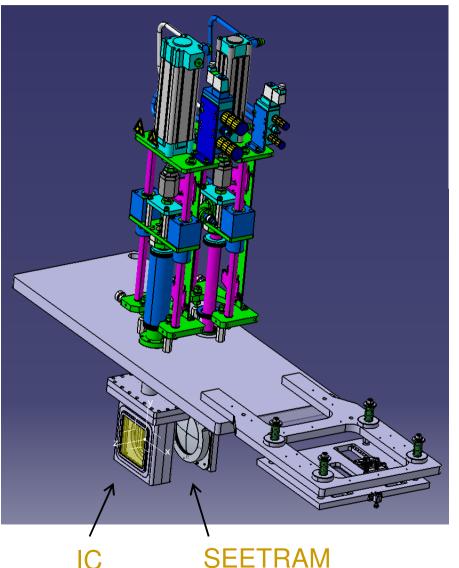
Beam Instrumentation PID Detectors

C. Nociforo B. Voss O. Kisselev et al.



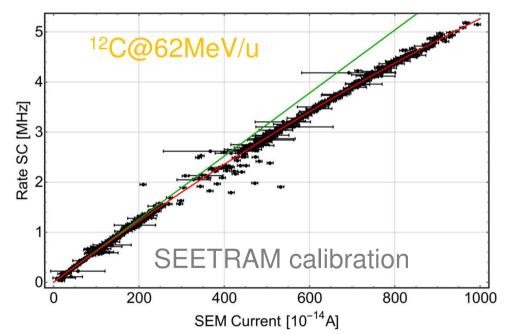
1st GEM-TPC

- Drive unit with SEM Grid (profile monitor) and GEM-TPC (tracking) , all Finnish in-kind
- ✓ IKC for SEM Grid signed, design running
 ✓ IKC for drive signed ? kick-off scheduled Oct.7, 2019, 32 units
 ✓ IKC for GEM TPC drafted, beamtime test scheduled 2019
- MUSIC (energy-loss), Finnish in-kind, 4 units
 ✓ IKC signed (12/2017)
 - ✓ CDR done (11/2018), design phase running
 - New PreAmps development by Mesytech
- ToF (Silicon based), Russian in-kind, 4 units
 ✓ Detailed Spec ready since Nov. 2016
 - IKC negotiation ongoing (last meeting: last Monday)
 FAIR needs to take care on mechanics and DAQ
- Plastic scintillators, Swedish in-kind, 6 units
 - \checkmark IKC drafted , waiting for signature from Sweden


UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄN YLIOPISTO

> MUSIC: CDR design

2nd GEM-TPC


Beam Instrumentation Intensity Monitor (PDC)

C. Nociforo F. Schirru T. Blatz et al.

- 2 stations (target area & FPF4)
- detectors: SEETRAM, IC, diamond
- FAIR procurement
- PDC drive designed (FPF4, 1 flange, 2drives)
- SEETRAM design (Ø 100 mm, 3-Al foils, 24 um) ready and tested in 2018

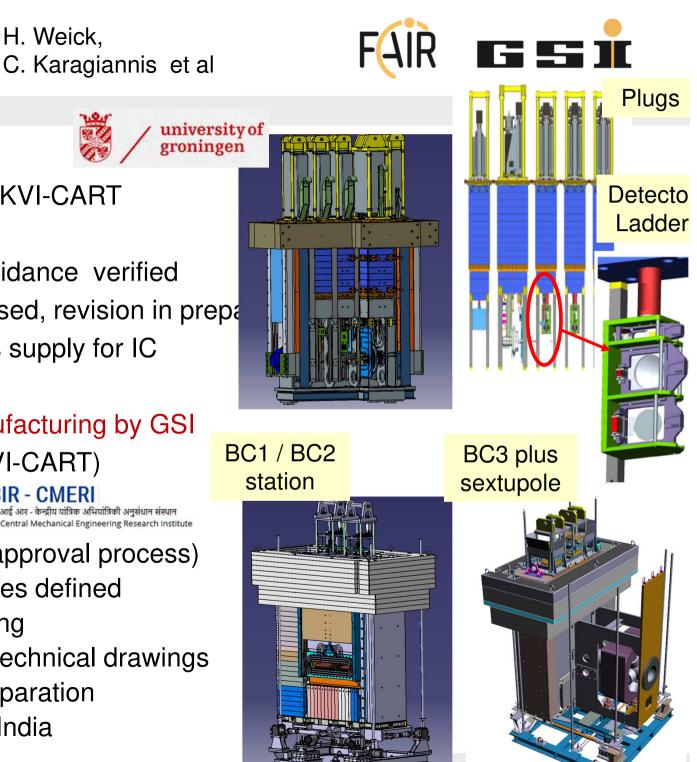
- IC under design
- Counting particle detector (diamond) mounted on a different flange (Ru in-kind)

FAIR GmbH | GSI GmbH

C. No

Target Area

Target chamber:


- Collaboration Contract with KVI-CART (design chamber & plugs)
- Plug mock-up built, plug guidance verified
- CDR March 2019, not released, revision in prepa \blacktriangleright detector plug cooling, gas supply for IC
- FDR expected Q2/2020
- Afterwards: tender on manufacturing by GSI

(due to reorganization of KVI-CART)

Beam Catchers:

H. Weick,

- ✓ DS released, IKC drafted (approval process)
- Design by CMERI, Interfaces defined
- CDR done, FDR approaching \checkmark
 - some quality issue with technical drawings
 - absorber mock-up in preparation
- Tender (manufacturing) by India (after IKC closed)

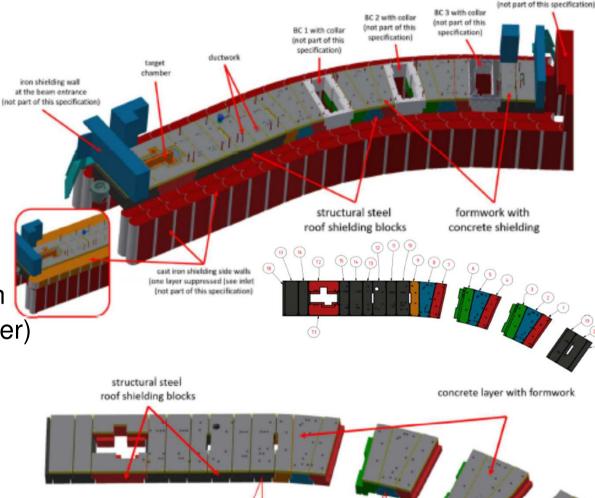
Negotiation with potential in-kind partner failed

• DS for lateral shielding released

Funding secured CBWG 2018

٠

 Tender for lateral iron shielding started (early installation!)


m~41t m~32

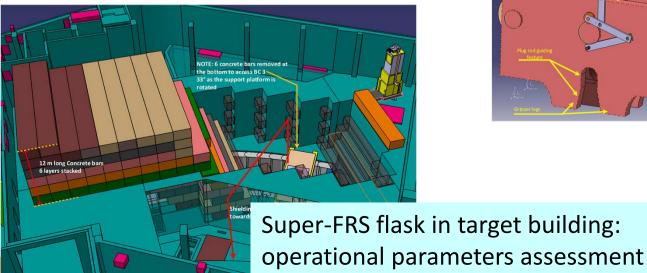
- DS for roof shielding drafted
- Ru announced interested; decision (expected Q4/2019 (otherwise tender)

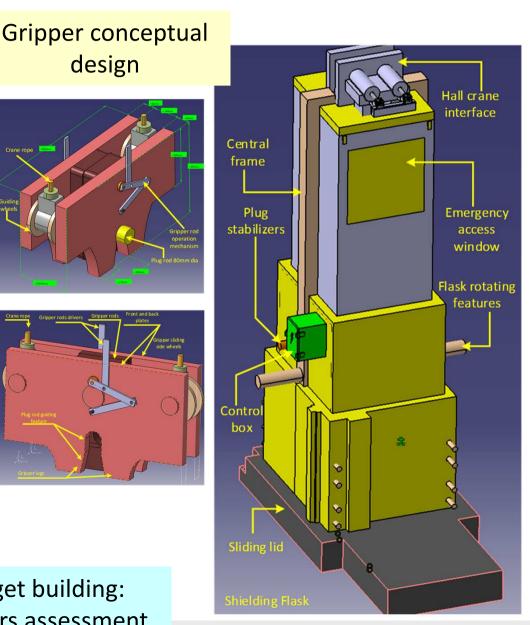
example

Target Shielding (Iron) R. Knöbel A. Kratz et al

H. Weick,

example


ron shielding wall at the beam exit


H. Weick, F. Amjad et al

Shielding Flask

- ✓ DS in released
- ✓ IKC (Finland) drafted
- Similar Flask required for pbar, Swedish in-kind
- Joint procurement intended in preparation with IOP and Partners
- Radiation protection operational plan sent to authority for approval and for TÜV certification requirements
- Contact with ESS remote handling team established

port

Summary

- Super-FRS can be ready for operation in 2025
- Time schedule: ambitious but realistic
 - Staged realisation of branches possible (in case of late deliveries)
- Civil Construction main topic:
 - Tender FAIR CC south on market
 - Building services planning running
- (Time) critical items identified
 - SC Multiplets: FoS SM delivered to CERN, SAT running
 - > Local cryogenics: IKC (Poland) negotiation running; BINP is new collaborator
 - Collaboration Contract for NC multipole development closed with BINP
 - Tender for (lateral) iron shielding on market

Thank you for you attention !