Low-momentum transfer measurements with the ACTAR TPC active target

Riccardo Raabe

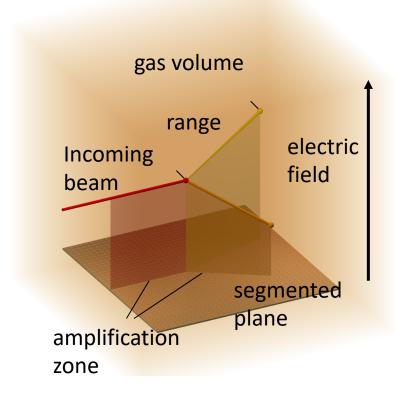
KU Leuven, Instituut voor Kern- en Stralingsfysica

NUSTAR Week 2019

Gif-sur-Yvette, 23-27/09/2019

Credits: Simone Ceruti (Univ. Milano)

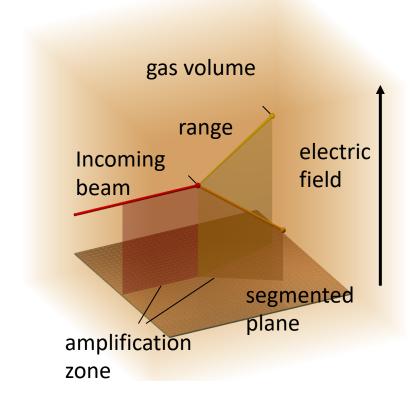
Alex A. Arokiaraj (KU Leuven)


Marine Vandebrouck (CEA Saclay)

Active targets

Time-Projection Chamber (TPC) + gas is the target

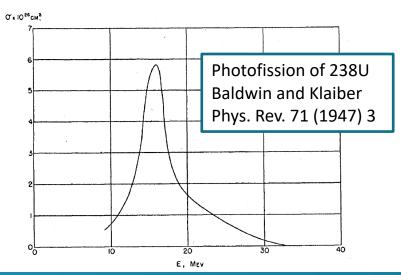
- Electrons produced by ionization drift to an amplification zone
- Signals collected on a segmented "pad" plane ⇒ 2d-image of the track
- 3rd dimension from the drift time of the electrons
- Information:
 - angles
 - energy (from range or charge)
 - particle identification

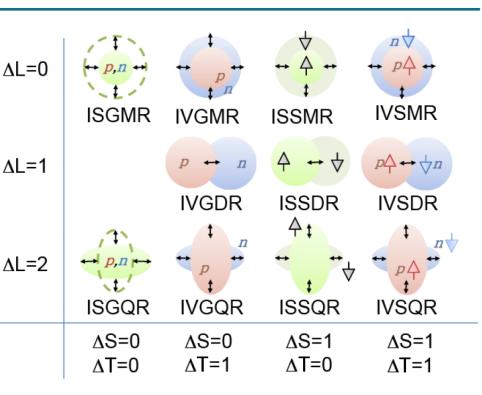


Active targets

Advantages

- Large target thickness→ high luminosity
- Efficient:
 - 4π geometry
 - Low thresholds
- Extremely versatile
 - different gases and pressures
 - variable shape
 - auxiliary detectors


Collective excitations: Giant resonances


Collective modes

OOOOOO

- Giant Resonances (GR) are nuclear collective excited states
- Many if not all nucleons are involved in the excitation
- They involve spin (S), isospin (T) and angular momentum (L)

IVGDR known since 1947

M. N. Harakeh and A. van der Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation Oxford University Press

Collective excitations: Giant resonances

Why so important?

Active targets

- Robust test for self-consistent mean-field approaches based on density functionals
 - GRs: harmonic oscillations, RPA response function derived from TDHF equations
 - GRs constrain the parameters of the functional to the nuclear dynamics
- Provide information on features of finite nuclei and nuclear matter
 Effective masses, neutron skin, vortex motions, incompressibility

Summary O

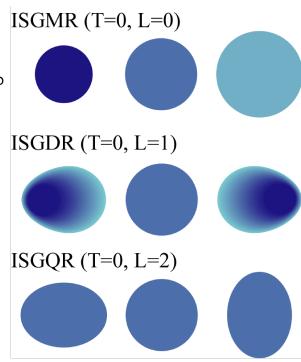
Isoscalar modes

Isoscalar modes are compression modes

Collective modes

 \rightarrow tool to study incompressibility of nuclear matter K_{∞} through the nuclear incompressibility K_A

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m\langle r^2 \rangle}}$$

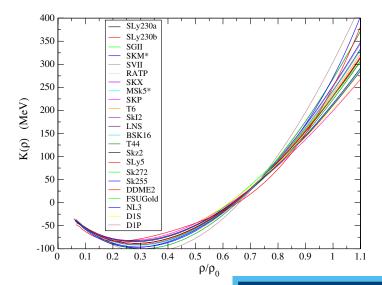

 K_{∞} can be extracted from

an expansion of K_A :

$$K_A = K_{vol} + K_{surf}A^{-1/3} + K_{sym}\left(\frac{N-Z}{A}\right) + K_{coul}\frac{Z^2}{A^{4/3}}$$
 by fitting data and assuming $K_{vol} = \lim_{A \to \infty} K_A = K_{\infty}$

RPA calculations that provide K_{∞} and E_{ISGMR}

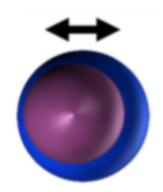
$$K_{\infty}=230\pm40~\mathrm{MeV}$$
 Kahn et al, Phys. Rev. Lett. 109 (2012) 092501


Equation of State

Active targets

- K_{∞} is an ingredient of the nuclear Equation of State (EoS)
- EoS is used to describe
 - heavy-ion collision
 - core-collapse supernovas
 - neutron star and neutron-star mergers
 - black holes...
- Constrained by
 - astrophysical observations
 - properties of nuclei
- Kahn et al, Phys. Rev. Lett. 109 (2012) 092501:
 - Use E_{GMR} vs. <u>derivative</u> of $K(\rho)$ at ρ_c instead of E_{GMR} vs. K_{∞}
 - Measure E_{GMR} in nuclei far from stability to study the isospin dependence of $K(\rho)$

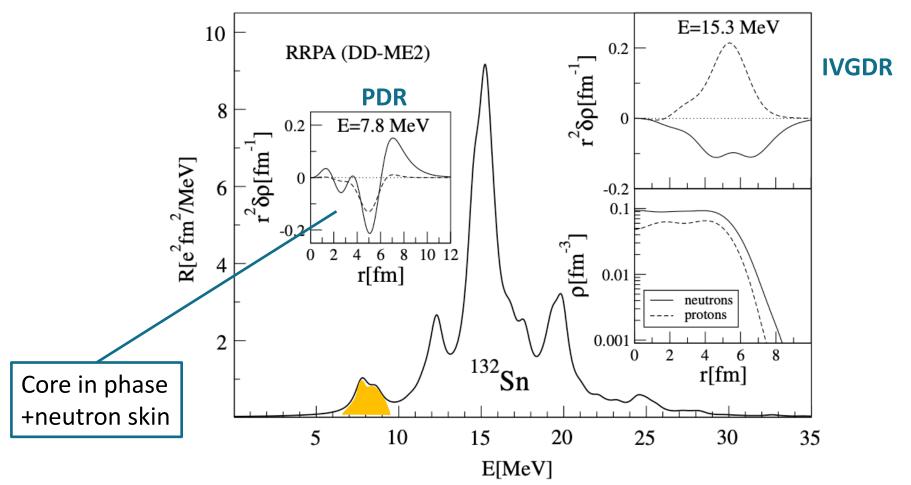
Image credit: Mark Garlick, University of Warwick



Summary O

Active targets

Low-energy dipole strength

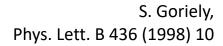

- First observation in 1961
 γ rays from neutron capture
 G.A. Bartholomew, Annu. Rev. Nucl. Sci. 11 (1961) 259
- First use of "pygmy resonance" (PDR) J.S. Brzosko et al., Can. J. Phys 47 (1969) 2849
- Description as a collective excitation
 Mohan et al., Phys. Rev. C 3 (1971) 1740
 "Three-Fluid Hydrodynamical Model of Nuclei": Neutron excess oscillates against the N=Z core

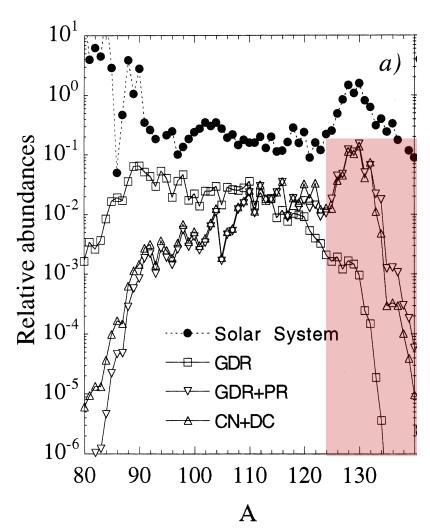
Summary O

D. Vretenar et al., J. Phys. G 35 (2008) 014039



Active targets

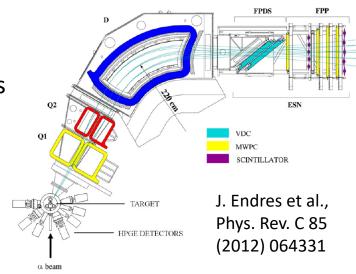

 Different experimental probes to investigate the nature of these states

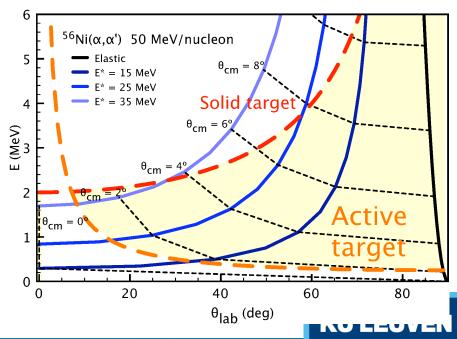

Figure A. Bracco et al., Eur. Phys. J. A 51 (2015) 99 Data from K. Govaert et al., Phys. Rev. C 57 (1998) 2229 and J. Endres et al., Phys. Rev. C 85 (2012) 064331

Impact: r-process abundances

- Calculation for $T = 10^9 \text{ K}$, $N_n = 10^{20} \text{ cm}^{-3}$, $\tau = 2.3 \text{ s}$
- Under some conditions,
 PDR can enhance production in some regions

Active targets ● Collective modes ●●●●●●● Measurements ●○○○○ Future ○○○ Summary ○


Experimental techniques (isoscalar)


Inelastic scattering, multipole expansion
 Maximum cross section at very forward angles

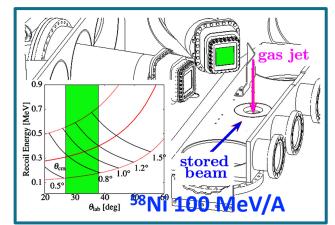
Stable nuclei

Unstable nuclei

Inverse kinematics
 Low momentum transfer
 Very low energy of recoil nucleus

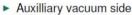
Low momentum-transfer in storage rings

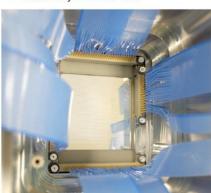
Physics Letters B 763 (2016) 16-19


Contents lists available at ScienceDirect

Physics Letters B

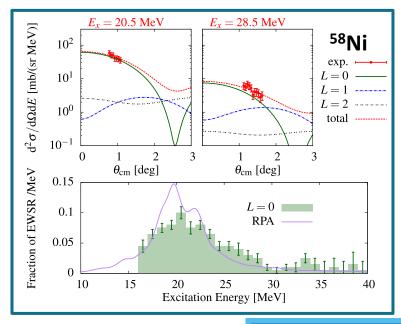
www.elsevier.com/locate/physletb



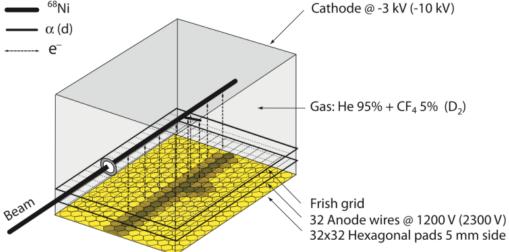

CrossMark

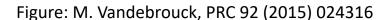
First measurement of isoscalar giant resonances in a stored-beam experiment

J.C. Zamora ^{a,*}, T. Aumann ^{a,b}, S. Bagchi ^{c,b}, S. Bönig ^a, M. Csatlós ^d, I. Dillmann ^b, C. Dimopoulou ^b, P. Egelhof ^b, V. Eremin ^e, T. Furuno ^f, H. Geissel ^b, R. Gernhäuser ^g, M.N. Harakeh ^c, A.-L. Hartig ^a, S. Ilieva ^a, N. Kalantar-Nayestanaki ^c, O. Kiselev ^b, H. Kollmus ^b, C. Kozhuharov ^b, A. Krasznahorkay ^d, Th. Kröll ^a, M. Kuilman ^c, S. Litvinov ^b, Yu.A. Litvinov ^b, M. Mahjour-Shafiei ^{h,c}, M. Mutterer ^b, D. Nagae ⁱ, M.A. Najafi ^c, C. Nociforo ^b, F. Nolden ^b, U. Popp ^b, C. Rigollet ^c, S. Roy ^c, C. Scheidenberger ^b, M. von Schmid ^a, M. Steck ^b, B. Streicher ^b, L. Stuhl ^d, M. Thürauf ^a, T. Uesaka ^j, H. Weick ^b, J.S. Winfield ^b, D. Winters ^b, P.J. Woods ^k, T. Yamaguchi ^l, K. Yue ^{a,b,m}, J. Zenihiro ^j



Ultra-high vacuum side

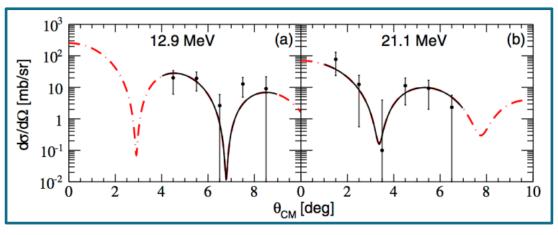

P. Egelhof (GSI), **EXL** Collaboration H. Moeini et al., NIMA 634 (2011) 77



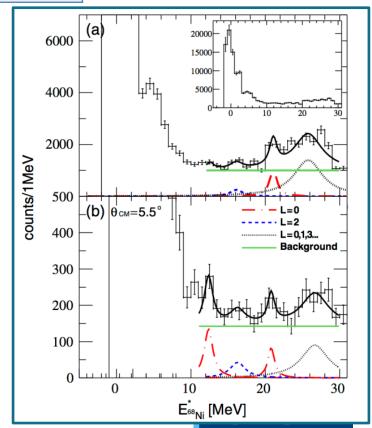
Active targets: Maya

- Particles stopped inside the gas
- Mask to screen/collect electrons produced by the beam particles

- ⁵⁶Ni(d,d') GMR and GQR
 C. Monrozeau et al., PRL 100 (2008) 042501
- 68Ni(d,d') and (α,α')
 GMR, GQR and soft monopole
 M. Vandebrouck, PRL 113 (2014) 032504
 M. Vandebrouck, PRC 92 (2015) 024316
- ⁵⁶Ni(α,α') GMR and GDR
 S. Bagchi, PLB 751 (2015) 371


Active targets Collective modes Collective modes Measurements Collective modes Measurements Collective modes Collective modes

Active targets: Maya

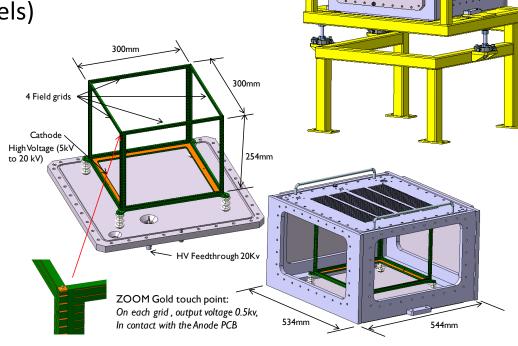

⁵⁶ Ni	50 MeV/A	Monrozeau et al. 2008	$E_{ISGMR} = 19.3 \pm 0.5 \text{ MeV}$ $E_{ISGQR} = 16.2 \pm 0.5 \text{ MeV}$
⁵⁶ Ni	50 MeV/A	Bagchi et al. 2015	$E_{ISGMR} = 19.1 \pm 0.5 \text{ MeV}$ $E_{ISGDR} = 17.4 \pm 0.7 \text{ MeV}$
⁶⁸ Ni	50 MeV/A	Vandebrouck et al. 2015	$E_{ISGMR} = 21.1 \pm 1.9 \text{ MeV}$ $E_{ISGQR} = 15.9 \pm 1.3 \text{ MeV}$

Example ⁶⁸Ni (α,α')

- Beam intensity 4x10⁴ pps, purity 75%
- He + 5% CF_4 pressure 500 mb
- Recoil threshold 600 keV

M. Vandebrouck, PRL 113 (2014) 032504

Summary O


Beyond Maya: ACTAR TPC

Work of P. Gangnant, GANIL

Improvements

- Multi-particle detection
- Low energy threshold
- Spatial resolution (angular and range)
- Reconstruction efficiency
- New electronics (16k channels)
- **Energy dynamics**
 - pad polarization
 - electrostatic mask

Isoscalar resonances in ⁶⁸Ni

PhD of Alex Arokiaraj (KU Leuven)

Measurement at LISE (GANIL)

 ^{58,68}Ni at 49 MeV/nucleon, ≈10⁴ pps inelastic scattering on ⁴He

- 98% He + 2% CF₄
 400 mbar
 2.5x10²⁰ at/cm²
- Resolution ≈500 keV

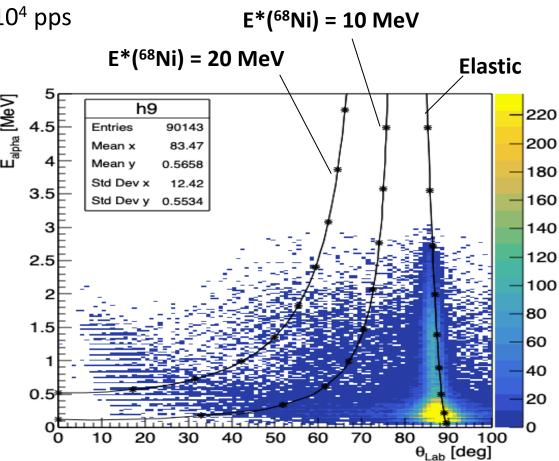
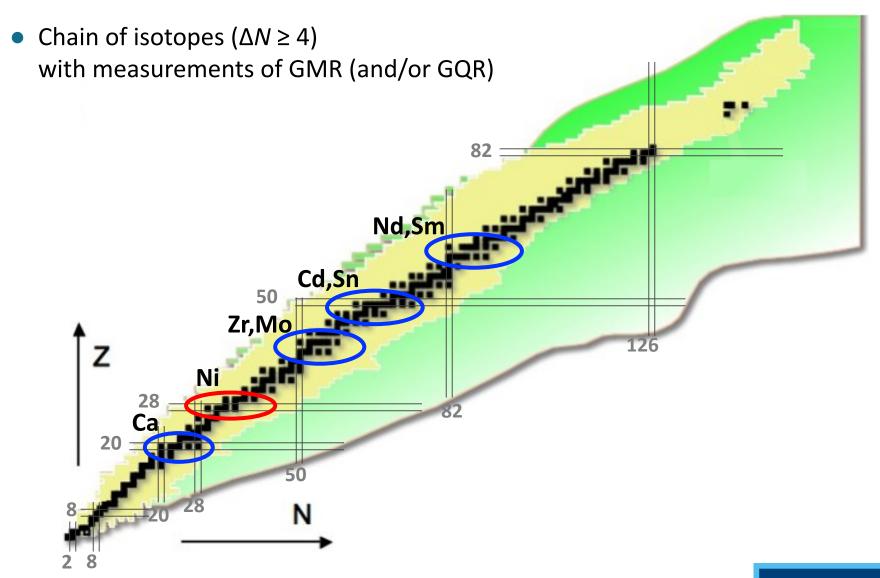
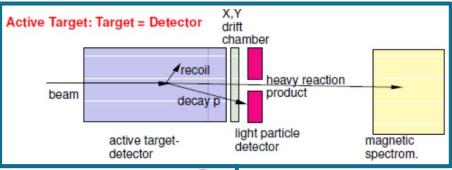
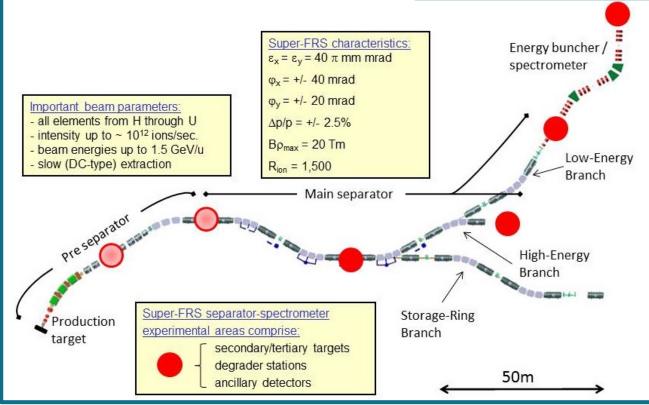



Figure: Marine Vandebrouck

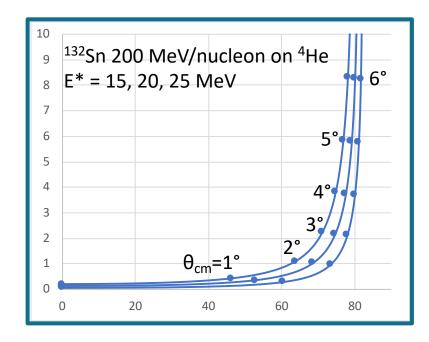
Active targets ● Collective modes ●●●●●●● Measurements ●●●●● Future ●○○ Summary ○

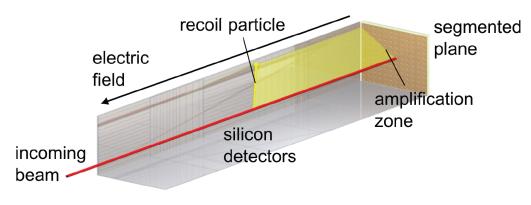

Where do we go from here

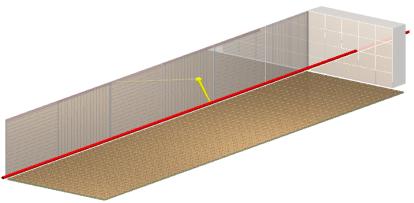


Active target in NUSTAR?

Maximum energy ≈200 MeV/nucleon \rightarrow Bp(132Sn) = 5.35 Tm


CDR of Super-FRS (Nov 2016)




Active targets

Active target in NUSTAR?

- Elongated geometry (1m?)
- Track reconstruction in gas
- Particle angles from tracks
- Particle energy from ancillary detectors
- Decay particles at forward angles

Active targets Collective modes Measurements

Summary

Collective modes (still) very important for nuclear research and beyond

- GRs: constraints on density functionals
- IS-GRs (compression modes): related to incompressibility and Equation of State of nuclear matter → nuclear physics, astrophysics implications
- Soft modes not well understood: Neutron skin? Nature of excitations?

Opportunities at NUSTAR/FAIR

- Maximum energy ≈200 MeV/nucleon
- Location at Super-FRS, Low-Energy Branch...
- High luminosity, complete kinematic reconstruction

