

Vacuum System of CR and RESR

MAC Meeting #3 10.02.2010

Antiproton Lifetime Limiting Processes

Beam-Gas Interaction

- Nuclear Scattering
- Single Coulomb Scattering
- Multiple Scattering
- Inelastic Scattering

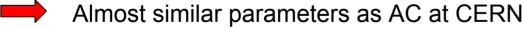
Only multiple scattering plays a role in RESR:

- for 3 GeV and $1x10^{-10}$ mbar $N_2 \partial \varepsilon / \partial t = 0.1$ mm mrad / h
- can be compensated by cooling

Ion Production and Trapping

- Only expected at intensities >10¹¹ stored antiprotons
- Could be a problem for RESR, but can be resolved by clearing electrodes!

Lifetime for RIBs more critical than for antiprotons

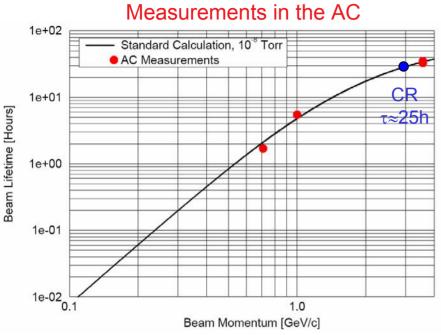

Basic Parameters of CR

Storage ring for

- 1. stochastic cooling of radioactive ion beams (740 MeV/u)
- 2. stochastic cooling of antiproton beams (3 GeV)
- 3. Isochronous mass measurements

Circumference	215.011 m		
Max. magnetic rigidity	13 Tm		
	Antiprotons	Rare Isotopes	Isochronous Mode
Max. particle number	10 ⁸	10 ⁹	1 - 10 ⁸
Kinetic energy	3 GeV	740 MeV/u	790 MeV/u
Velocity	0.971 c	0.830 c	0.840 c
Acceptance mm mrad	240	200	100
Cooling time [s]	10	1.5	-

Required beam lifetime in the order of 1000s for antiprotons, for RIBs vacuum is more critical


UHV system with a pressure in the order of 10⁻⁹ mbar

No in-situ bake out of vacuum system required, design criteria like for heavy ion therapy accelerator in Heidelberg

Lifetime for Antiprotons and lons

Spec.	Pressure [mbar] N ₂ equiv.
H ₂	4.47x10 ⁻⁹
CH ₄	5.45x10 ⁻¹⁰
H ₂ O	1.55x10 ⁻⁹
CO	1.36x10 ⁻⁹
CO ₂	7.54x10 ⁻¹¹
Total	8.00x10 ⁻⁹

Calculations for lons

Beam energy: 740 MeV/u

Assumed residual gas composition: 79.5% $\rm H_2$, 20.5% $\rm N_2$

Assumed total pressure: 6.2x10-9 mbar

Lifetime [s]

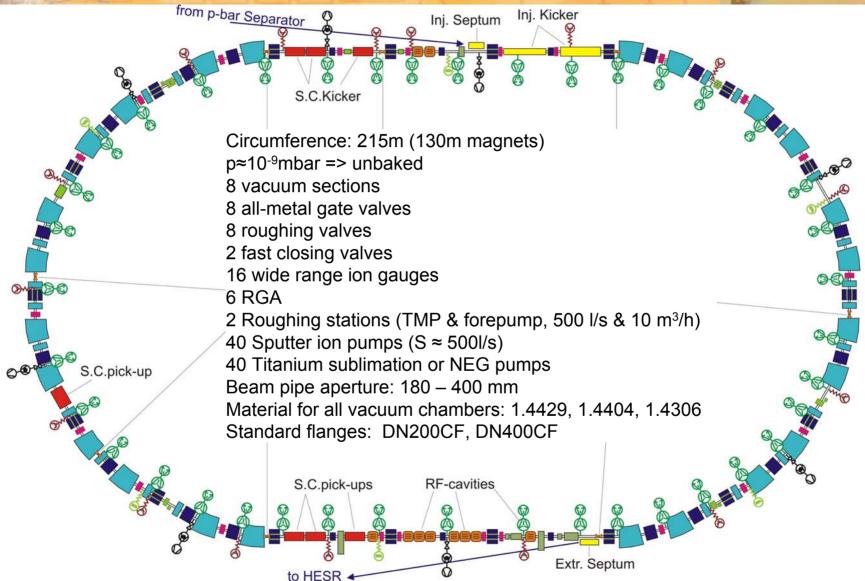
lon	bare	H-like	He-like
Uranium	3100	2300	1700
Tin	37000	550	280
Argon	3.6x10 ⁶	48	24

Calculations by T. Stöhlker, GSI

Measures to Avoid the In-situ Bake Out

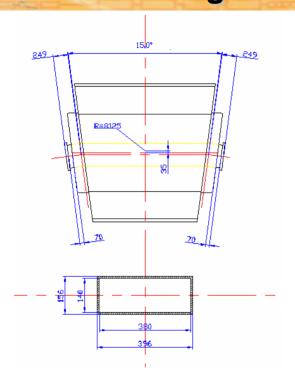
- Use of only UHV compatible materials
- Ultrasonic cleaning of all components by manufacturer
- Ex-situ bake out of all components by manufacturer
- Venting of components with dry nitrogen (grade 4.5) by manufacturer
- Components covered in Al-foil and sealed in PE-Foil, done by manufacturer
- Shipping to FAIR
- The flanges will only be removed for final assembly
- Pre-assembly of components under flow hood with vertical laminar flow
- Assembly of smaller components in the accelerator under dynamical confinement or under mobile flow hood where applicable
- Mounting with clean gloves and clean room adequate clothes
- Use of cleaned tools and materials

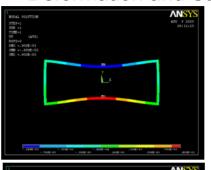
Estimation of Required Pumping Speed



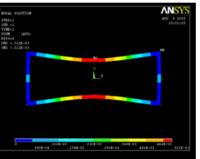
- Circumference: 215 m
- Typical UHV chamber diameter 200 400 mm
- Overall inner surface: approx. 250 m²
- Overall volume: approx. 18.5 m³
- Required pressure: 1x10⁻⁹ mbar
- Typical surface related outgassing rate of unbaked stainless steel: 1x10⁻¹¹ mbar I s⁻¹ cm⁻²
- Total outgassing rate: Q = 2.5x10⁻⁵ mbar l s⁻¹
- Required effective pumping speed: S_{eff} = 25000 l s⁻¹

Schematic Vacuum Layout of CR



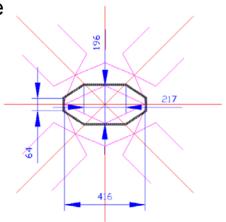

Calculations on Mechanical Stability of Magnet Vacuum Chamber

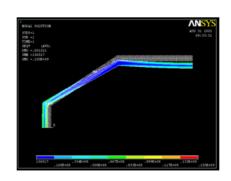
Dipole



Deformation and Stress Calculations

for 8 mm thickness:


D_{max}=0.9 mm S_{max}=138 MPa



for 10 mm thickness:

D_{max}=0.52 mm S_{max}=99 MPa

Quadrupole

for 8 mm wall thickness:

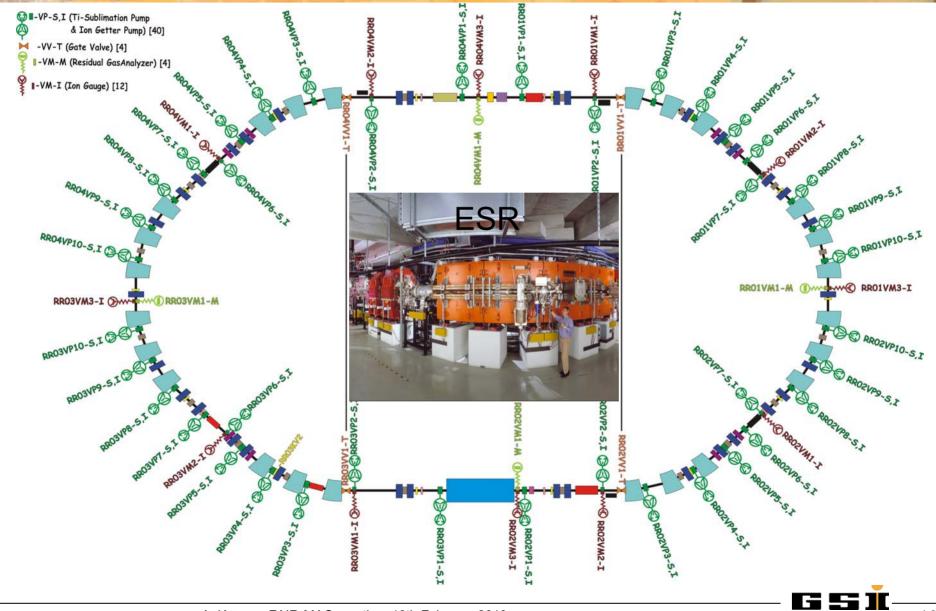
D_{max}=1.2 mm S_{max}=150 MPa

Calculations by Junhui Zhang (IMP, Lanzhou)

Basic Parameters of RESR

Storage ring for

- 1. Accumulation of antiprotons with 108 from the CR every 10s
- 2. Fast deceleration of RIBs to 100 MeV/u for injection into NESR (collider mode)
- 3. Deceleration of antiprotons to 120 MeV for injection into ER (AIC mode)


Circumference	240 m	
	Antiprotons	RIBs
Injection energy	3 GeV	740 MeV/u
Extraction energy	3 GeV	100 – 740 MeV/u
Accumulation rate	3.5 x 10 ¹⁰ /h	no accumulation
Max. particle number	1 x 10 ¹¹	1 x 10 ⁹
Accumulation time for max. particle number	3 h	no accumulation

Intensities and lifetime requirements comparable to Recycler Ring at Fermilab Required beam lifetime in the order of 100h for antiprotons UHV-system with a pressure in the order of 10⁻¹⁰ mbar

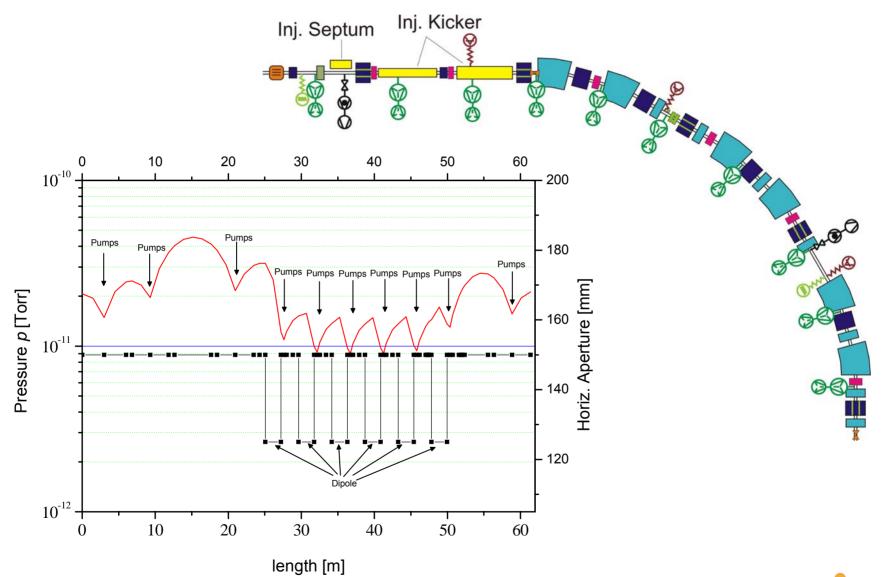
In-situ bake out of vacuum system up to 200°C (designed for 300°C), design follows the experience from existing ESR ($p_{Ave} \le 1x10^{-11}$ mbar)

Schematic Vacuum Layout of RESR

RESR Vacuum Chambers

Total of 240m (113m magnets) of vacuum system:

- Dipole vacuum chambers (2.7 m long, 250x70mm², 15°)
- Quadrupole vacuum chamber (1.15m, 300x150mm²)
- Sextupole vacuum chambers (0.5m, 300x150mm²)
- Corrector vacuum chambers (0.5m, 300x150mm²)
- 4 roughing chambers (one or two different types)
- 40 pumping and vacuum diagnostic chambers (one or two different types)
- Bellows (different length and apertures)
- Straight vacuum chambers (different length and apertures)
- Diagnostic chambers, RF-chambers, Septa, Kicker


Material for all vacuum chambers: stainless steel 1.4429, 1.4404, 1.4306 Standard flanges: DN160CF, DN250CF, DN320CF

Bake out of vacuum system with commercially available bake out jackets, tailored individually for each chamber. Temperature control with thermocouples and computer based control.

Vacuum Calculations RESR, one quarter

RESR Pumps, Valves and Gauges

Pump type	Number	Pumping speed	comments
Pumping station roughing	2	500 l/s & 10 m ³ /h	TMP & dry forepump
Sputter ion pumps	40	500 l/s	DN160CF
Ti sublimation pumps	40	2000 l/s	DN160CF
NEG coating			of chambers

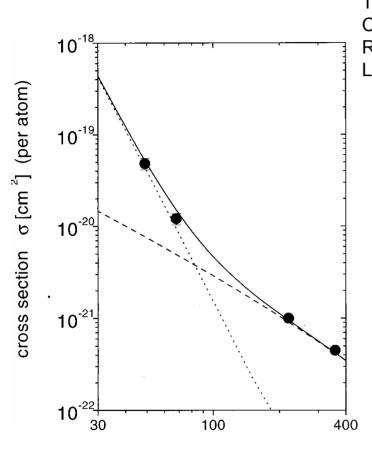
	Number	Туре	Dimension
Gate valve	4	all-metal	DN 250 CF
Valve for roughing	4	all-metal	DN 160 CF
Fast valve	2	all-metal	DN 160 CF

Gauge Type	Number	Flange
Hot Cathode Gauge	10	DN35CF
Residual Gas Analyzer	4	DN35CF

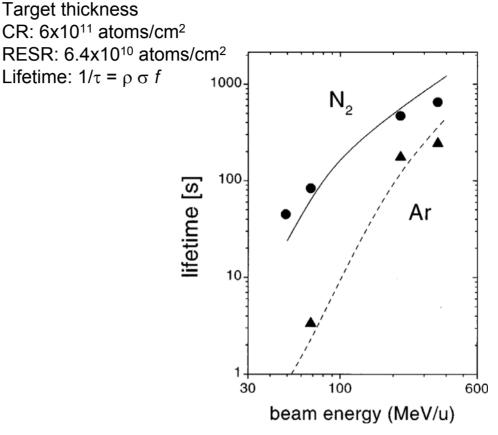
Summary

With the described techniques it is possible to fulfill the required vacuum conditions for RIBs and antiprotons in CR and RESR.

- First analytical calculations of pressure profiles in the rings done, input based on length and apertures.
 Detailed calculations are going on.
- Detailed design of whole CR and RESR vacuum system, regarding the positions and size of pumps and position of vacuum diagnostics is going on.
- Detailed design of the vacuum chambers started.



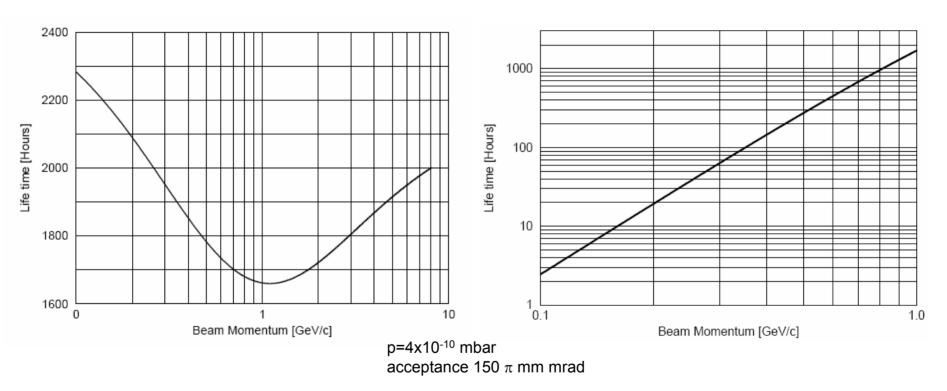
Back-up Folien



Lifetime for Decelerated Ions

Theoretical total electron-capture cross sections for U^{92+} on a N_2 target versus projectile energy (dotted line NRC, dashed line REC). The solid line refers to the sum of both predictions.

Experimental lifetimes for U^{92+} -ions obtained at the various beam energies for the case of a N_2 (solid points) and an Ar (solid triangle) gaseous target (1x10¹² particles/cm²). The solid line and the dashed line (for the N_2 and Ar target) represent theoretical lifetime estimates.



Lifetime Calculations for Antiprotons in AD

Single Coulomb Scattering

from: N. Madsen, PS/DI Note 99-06, AD Note 047, CERN 1999

Beam Neutralization at Recycler Ring

The lifetime comparisons with full neutralization (each antiprotons traps one ion) of the $2.0x10^{12}$ antiproton beam with case of no neutralization ($p_{Tot} = 5.37x10^{-10} \, \text{Torr}$)

Physical Process	No Ions	Neutralization
	(Normal Case)	(100%)
	[hours]	[hours]
Single Coloumb	4.64×10^{2}	4.62×10^{2}
Inelastic Scatt.	8.06×10^{2}	8.02×10^{2}
Mult. Coloumb	5.55×10^{1}	5.53×10^{1}
Nuclear Scatt.	1.61×10^{3}	1.60×10^{2}
Total Life Time	4.54×10^{1}	4.50×10^{1}

Effect of neutralization on lifetime <1%, but trapped ions cause a tune shift!

from: K. Gounder et al., Proc. of PAC 2003, 2928, 2003

CR Vacuum Chambers

Total of 215m (130m magnets) of vacuum system with large apertures:

- Dipole vacuum chambers (2.6 m long, 380x140mm²)
- Quadrupole vacuum chamber wide (1.3m, 400x180mm²)
- Quadrupole vacuum chamber narrow (0.75m, 180x180mm²)
- Quadrupole chamber ESR type wide (1.15m, 400x180mm²)
- Quadrupole chamber narrow septum (1.3m, 400x180mm²)
- Two different sextupole chambers (0.6m, 180x180mm²; 0.85m, 400x180mm²)
- Three different corrector chambers (0.4m&0.6m, 180x180mm², 400x180mm²)
- 8 roughing chambers (one or two different types)
- 40 pumping and vacuum diagnostic chambers (one or two different types)
- Bellows (different length and apertures)
- Straight vacuum chambers (different length and apertures)
- Diagnostic chambers, RF chambers, Septa, ...

Material for all vacuum chambers: stainless steel 1.4429, 1.4404, 1.4306 Standard flanges: DN200CF, DN400CF

CR Pumps, Valves and Gauges

Pump type	Number	Pumping speed	Comments
Pumping station roughing	2	500 l/s & 10 m ³ /h	TMP & dry forepump
Sputter ion pumps	40	500 l/s	DN160CF
Ti sublimation pumps	40	2000 l/s	DN160CF

	Number	Туре	Dimension
Gate valve	5	all-metal	DN200CF
Gate Valve	3	all-metal	DN400CF
Valve for roughing	8	all-metal	DN160CF
Fast valve	2		DN160CF

Gauge Type	Number	Flange
Wide Range Ion Gauge	16	DN35CF
Residual Gas Analyzer	6	DN35CF

