The SIS100 Dipole Magnet

Egbert Fischer, Pierre Schnizer

MAC-3

February 10 - 12, 2010 GSI, Darmstadt

The SIS100 Dipole Magnet: Contents

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

The references to the original papers are omitted in this presentation as there content is summarised as well as referenced in the distributed report:

E. Fischer, P. Schnizer:

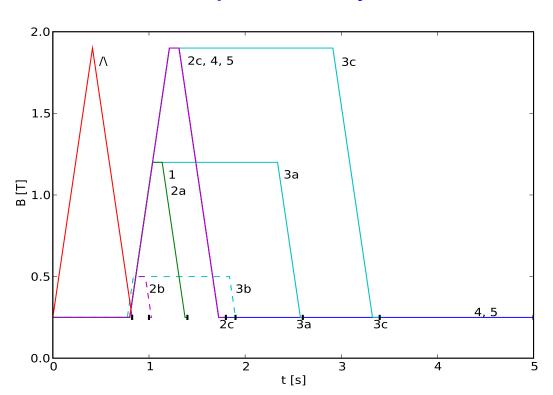
Design and Test Status of the SIS100 Dipole Magnet

1. Introduction

- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

Introduction: Design principles

- simple magnet design
- coil cooled by two phase Helium flow
- straightforward robust magnet yoke
- start from Nuclotron design


	unit	Nuclotron	S2LD BNG	C2LD BINP	Curved dipole
B x L _{effective}	[Tm]	2.823	5.788	5.819	5.818
B _{max}	[T]	1.98	2.1	1.9	1.9
L _{effective}	[m]	1.426	2.756	3.062	3.062
Estimated L _{yoke}	[m]	1.370	2.731	3.002	3.002
Bending angle	[deg]	3.75	3.33	3.33	3.33
Radius of curvature	[m]	22.5	47.368	52.632	52.632
Usable aperture (h x v)	[mm]	110 x 55	130 x 60	113 x 58	120 x 60

Introduction: Requirements

- a field strength curvature of Bp = 100 [Tm]
- good field region: an ellipse a = 57.5 mm, b = 30 mm

Main operation cycles

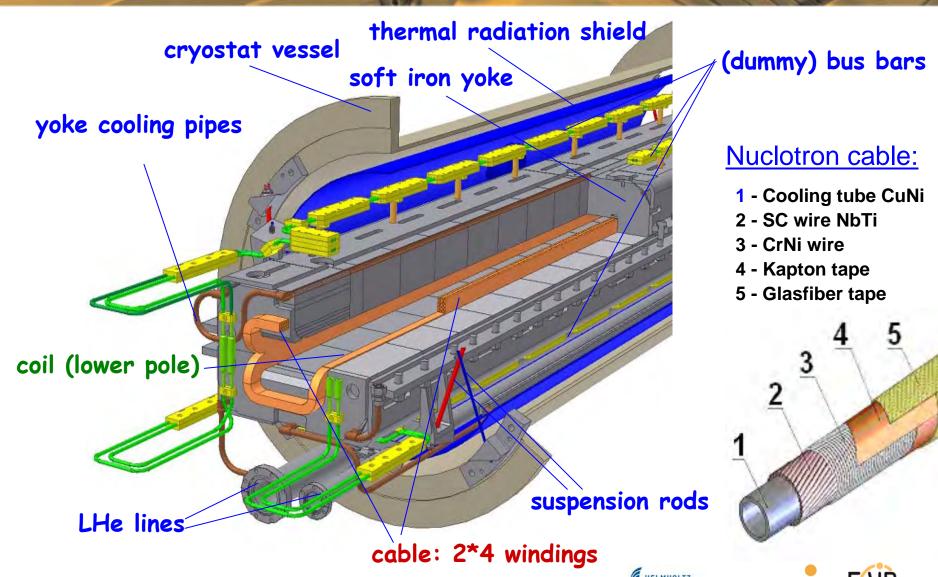
Cycle	B _{max} [T]	t _f [s]	t _c [s]
1	1.2	0.1	1.4
2a	1.2	0.1	1.4
2b	0.5	0.1	1
2c	1.9	0.1	1.8
3a	1.2	1.3	2.6
3b	0.5	1.0	1.9
3c	1.9	1.7	3.4
4	1.9	0.1	5.0
5	1.9	0.1	5.0
\wedge	1.9	0	0.84

- 1. Introduction
- 2. Main magnet components
 - Curved single layer dipole
 - First full size magnet
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion



Main magnet components

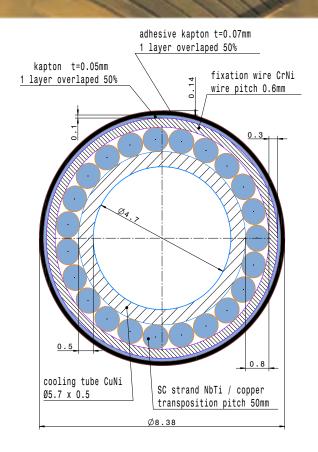
ANSYS Model:


- 1 yoke end plate
- 2 brackets
- 3 coil end loop
- 4 beam pipe
- 5 laminated yoke

Main magnet components: Layout 1st dipole

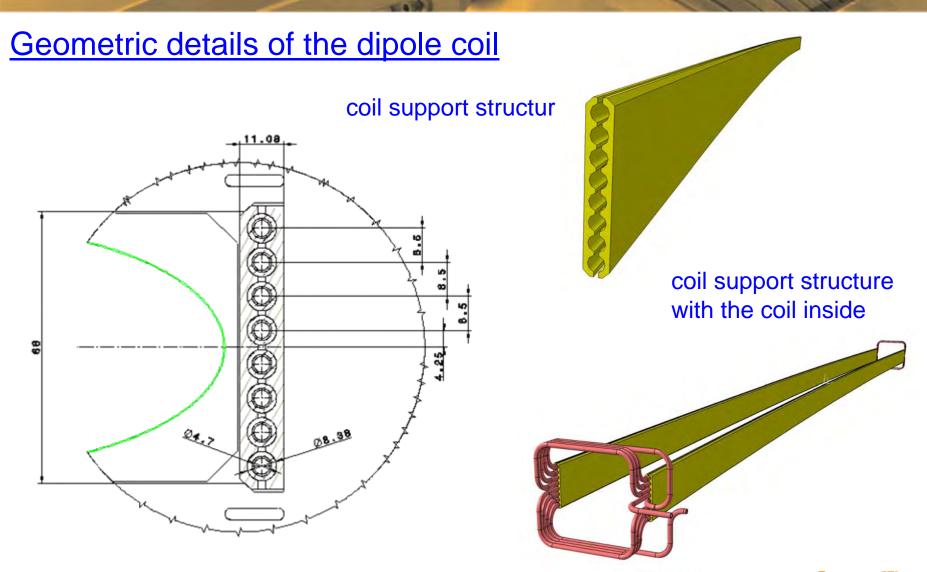
Main magnet components: Dipole parameters

Number of magnets		108 + 1 reference magnet
Design		Window-frame, laminated cold iron yoke, lamination thickness 1mm, one layer coil with 8 turns
Max. Field	Т	1.9
Min. Field	Т	0.23
Bending angle	Deg.	3.33
Edge angles (entrance / exit)	Deg.	1.665 / -1.665
Orbit curvature radius, R	m	52.632
Effective magnetic length, L	m	3.062
Coil aperture	mm	165 · 68
Useable aperture	mm	120 · 60
(good field region):	mm	115 · 60
Field quality (goal)		$\pm 6 \cdot 10^{-4}$
Current at max. field	A	12745
Inductance	mН	0.55
Ramp rate	T/s	4
Cycle 2c		
Cycle length	S	1.735
High field flat top duration	S	0.1
Low field flat top duration	S	0.8
AC loss @4.2K per magnet (cycle number 2c)	W	35.7
Overall width (cryostat)	m	1.0
Overall height (cryostat)	m	1.0
Overall weight	kg	1850

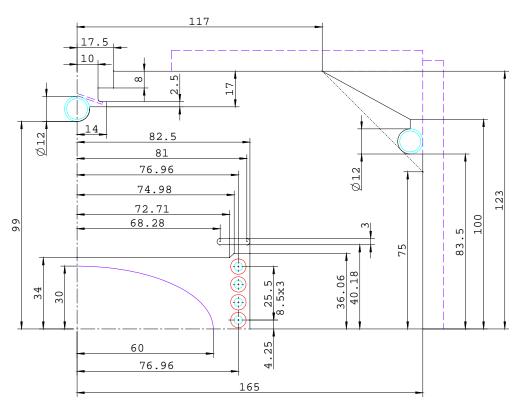


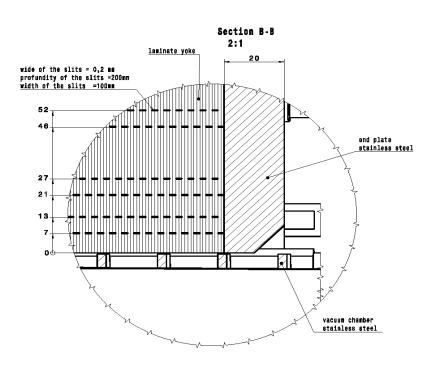
Main magnet components: High current cable

NT 1 C . 1			00	
Number of strands			23	
Transposition pitch			50	mm
Cooling tube material			Cu-Ni	
Cooling tube outer				
diameter			5.7	mm
Cooling tube wall				
thickness			0.5	mm
Critical current @ 2.1 T, 4.2	2 K		19840	A
1st insulating layer	with epoxy	impregr	nation	
material	Kapton	tape	2	layers
thickness/layer			50	μm
2nd insulating layer	with epoxy impregnation			
material			2	layers
thickness	Kapton	tape	70	μm
Wire				
Strand diameter			0.8	mm
Filament diameter			3.5	μm
Number of filaments			18144	
Filament twist pitch			5-8	mm
Superconducting material			NbTi	
Copper to superconductor ra	atio		1.5	
Copper RRR			196	
			transp. =	
Fixation of the strands	CrNi-wire	D=0.3	_	mm
Coating	epoxy comp	ound		


Cross section of the cable adopted for the SIS100 dipole coils (Nuclotron-type cable).

Main magnet components: Coil reinforcement



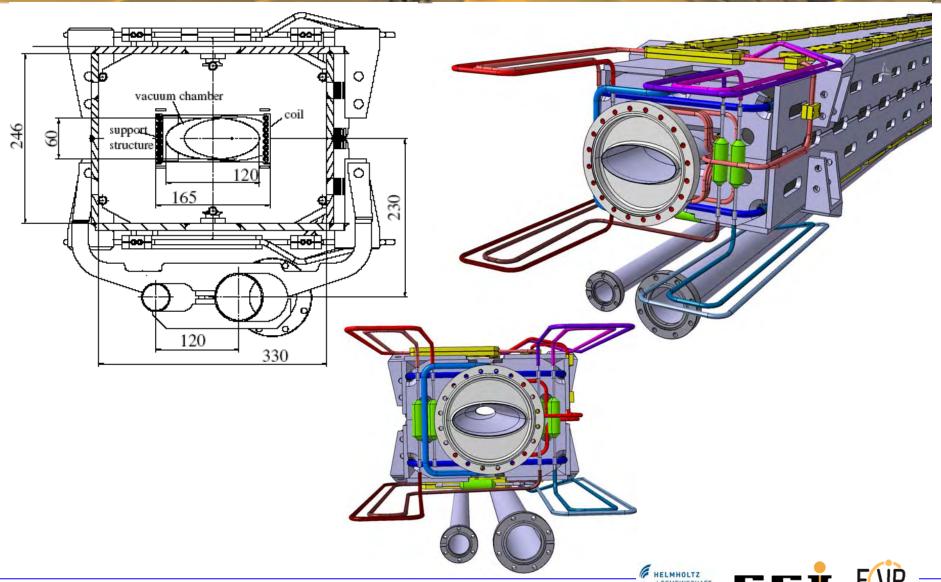


Main magnet components: Yoke lamination

Curved single layer dipole (CSLD)

lamination geometry ▼

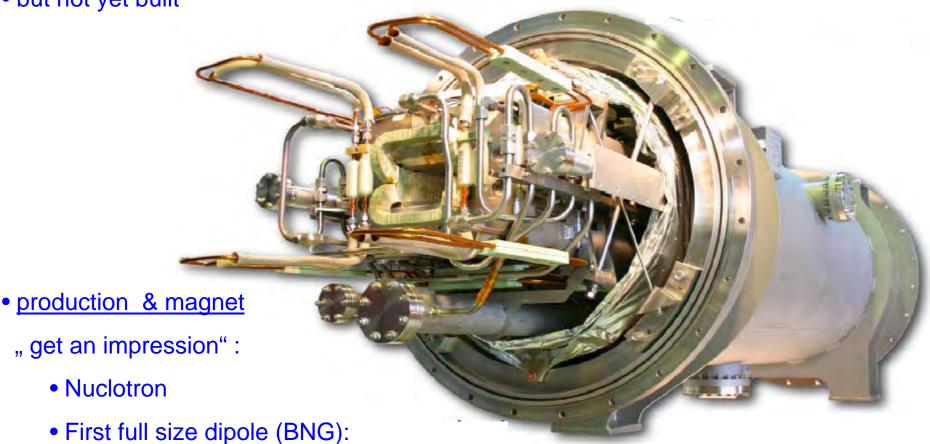
lamination slits near yoke end


cross section

Main magnet components: 3D View

1. Introduction

- 2. Main magnet components
 - Curved single layer dipole
 - First full size magnet
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

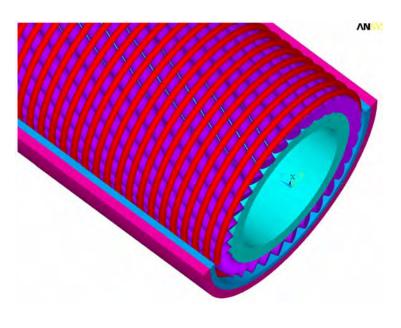


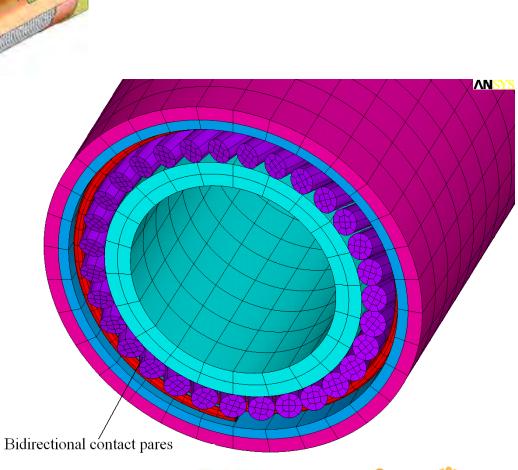
Main magnet components: First full size Dipole

Curved single layer design made

but not yet built

Production steps illustrated →





Main magnet components: Nuclotron type Cable

Nuclotron cable:

- 1 Cooling tube CuNi
- 2 SC wire NbTi
- 3 CrNi wire
- 4 Kapton tape
- 5 Glasfiber tape

3D ANSYS modelling

SIS100 Magnets: Production of the cable

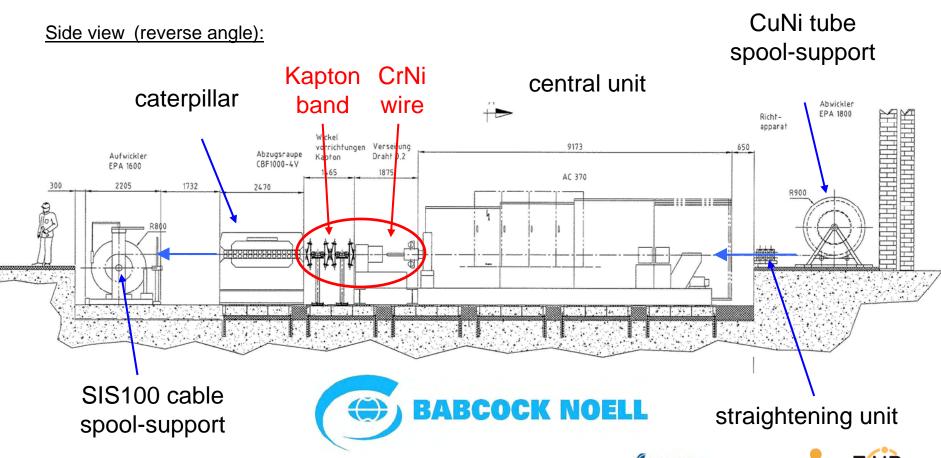
First cabling machine for the production of Nuclotron type cables

Parameters

- > up to 32 wires
- "dry" and "wet" technology
- isolation with polyimide tape (2 layers)
- flexible adjustment to different cable designs (number and size of strands, size of cooling tubes, ...)

Estimated production rate: ≥ 15 m/h

Cabling facility at JINR Dubna



SIS100 Magnets: Cable machine

Second cabling machine for industrial production of Nuclotron type cables

SIS100 Magnets: Cable production machine

Industrial cabling facility!

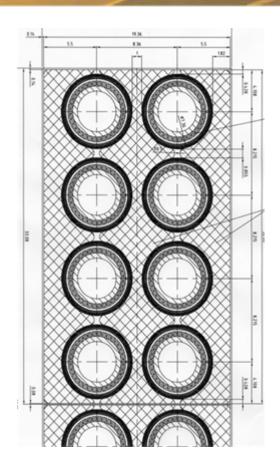
Cabling machine at the premises of BNG

Estimated production rate: ≥ 120 m per 8 h-shift. ≈ 2 complete dipole magnets

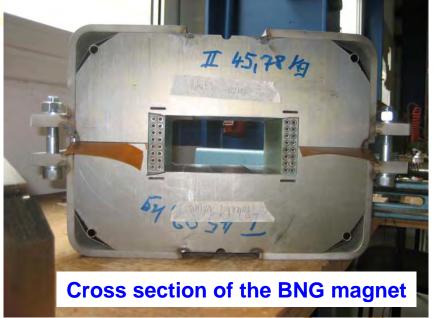
cabling facility of the BNG's:

- process safety
- reproducability
- > stable quality
- "dry" technology

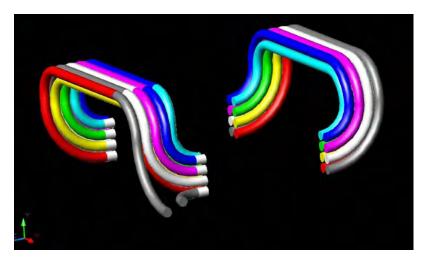
due to:

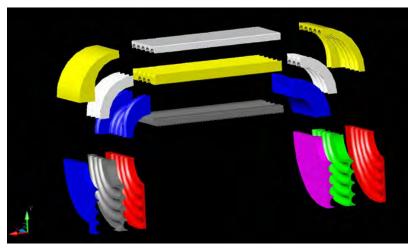

- ➤ Active and adjustable back rotation of the SC wire supply coils for all strands, avoiding torsion for all individual wires and for the cable.
- ➤ Active control of the winding force (including emergency stop) for all strands to avoid wire break and to keep winding force constant.
- ➤ Constant and adjustable torque (during operation) of CrNi wire spinning device to keep winding force of CrNi wire constant.
- ➤ Isolation with polyimide tape (up to 8 layers, with two different pitches) on-line Flexible adjustment to different designs (number and size of strands, size of cooling tube, ...)
- ➤ All actual machine-values for winding forces, torques, speeds, and pitches can be recorded for the quality documentation.

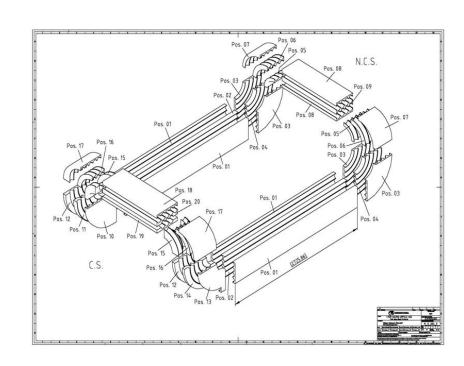
Main magnet components: Coil package



Support structure combs



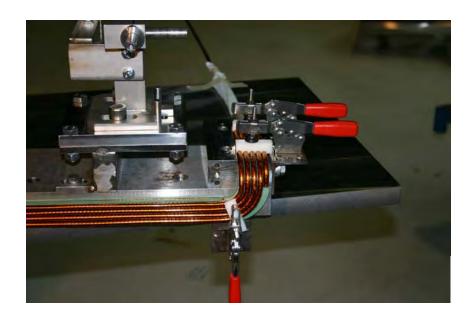



Main magnet components: Coil package

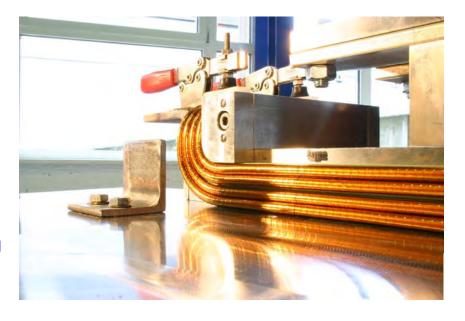
▲ layout of the coil end windings

▲ reinforcement structure

▲ coil end support drawing



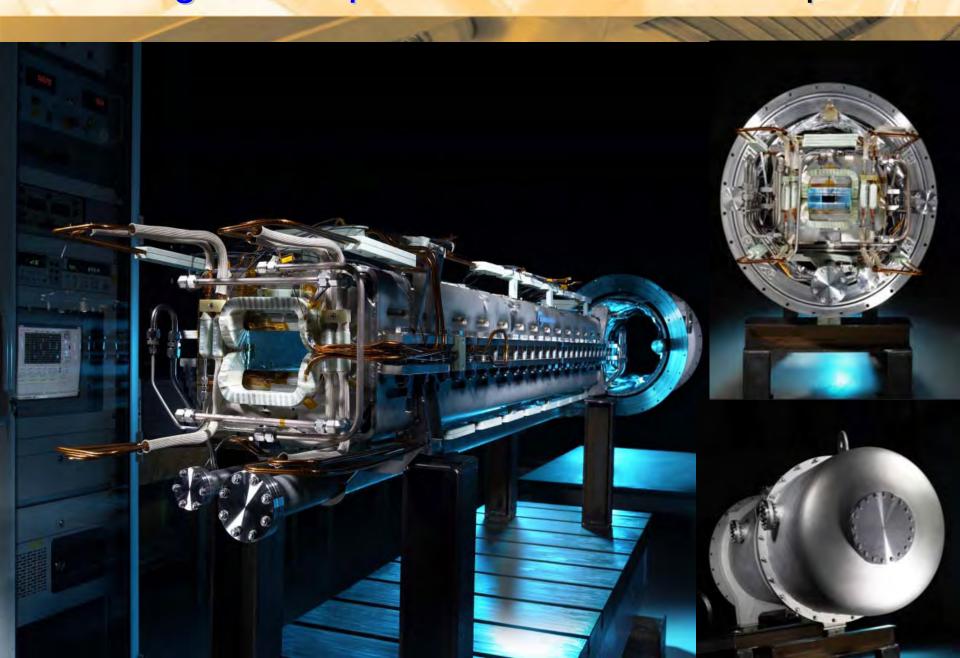
Main magnet components: First full size dipole


The coil ends during fabrication at the Babcock Noell GmbH

Winding process. The 4th turn of the inner layer is just being pre-bent to fit into the framework created by the innermost G11 pieces. Besides the coil in progress, the winding core the (pre-) bending tooling and various clamping elements are visible.

Precision of < 0.05 mm for Cable Position and Coil Shape

Enhancement of Winding Pack Rigidity



Main magnet components: First full size dipole

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
 - 1. Test of the cable
 - 2. Test of the coil pack
 - 3. Integral test
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

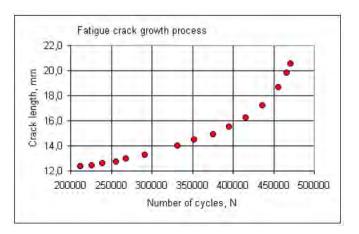
Mechanical stability: Tests

Goal:

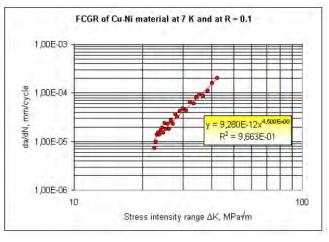
- Survival of the Cu-Ni- tube for at least 20 years of operation
- Stable coil package
- Technological optimization for production process of the cable

Tests of the mechanical properties of parts of cable and coil (at FZ Karlsruhe):

- fatigue crack growth rate of the CuNi material
- thermal expansion coefficients
- tensile strength at 4K and 300K
- leak test after mechanical load
- G11 material of the coil support structure modulus in different directions
- stress-strain curves before and after 2 million cycles
- leak test before and after 3 million cycles
- thermal expansion coefficients and leak test before and after thermal cycles
- stress-strain-curve after thermal cycling



25


Mechanical stability: Crack growth in CuNi tube

Measurements of the fatigue crack growth rate on CuNi material at FZ Karlsruhe:

$$a_0 = d/2 = 0.1 \, mm$$

$$a_f = \frac{1}{\pi} \left(\frac{KIC}{\Delta \sigma YS} \right)^2$$

Integration of Paris law:

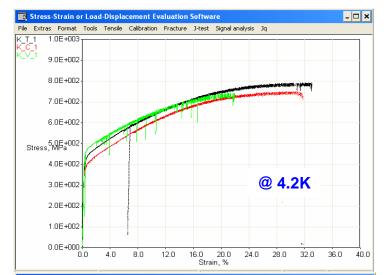
$$N_f = \int_{a_0}^{a_f} \frac{1}{C \left(Y S \Delta \sigma \sqrt{\pi a} \right)^m} da \approx 250 \cdot 10^6$$

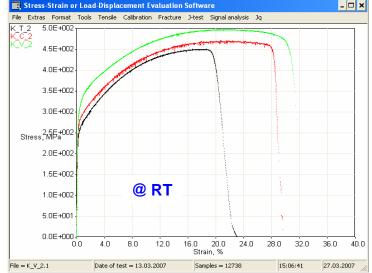
➤ Under the given conditions the tube will sustain more than 250 million cycles.

Mechanical Stability: CuNi tube - stress strain

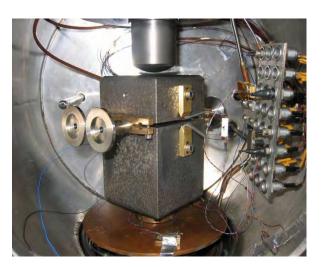
stress-strain measurements on the CuNi tube for different treated samples:

K_t: annealed in Argon gas


K_c: after 100 rapidly thermal cycles (80 – 300K)


K_v: annealed + 100 thermal cycles

File	T K	E- Modulus GPa	Yield Strength MPa	Ultimate Tensile Strength MPa	Uniform Elongation %	Total Elongation %
K_t_1	4.2	163	414	792	32,1	33,1
K_t_2	RT	165	250	451	18,6	23,1
K_c_1	4.2	156	385	751	28,8	31,6
K_c_2	RT	154	274	471	21,8	29,9
K_v_1	4.2	161	379	743	21,0	21,9
K_v_2	RT	155	300	498	19,7	32,2

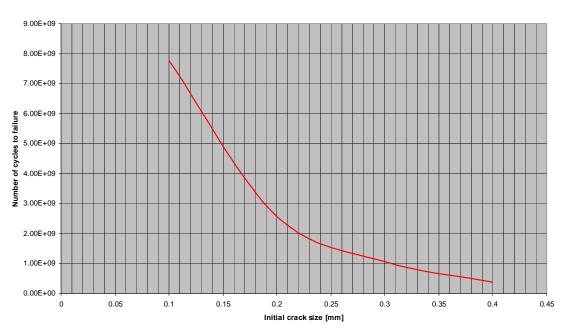


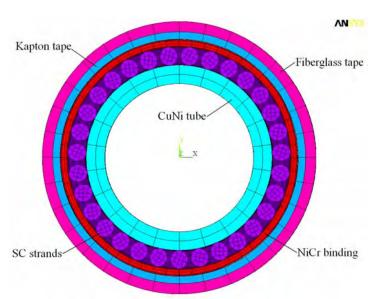
Mechanical Tests: CuNi tube – leak tests

Mechanical test of the CuNi tube

load	leak rate test for cycling with F _{max} = 800 N and T < 7 K			
	before cycling	after 2,6x10 ⁶ cycles		
sample nr.	LR. mbarl/s	LR. mbarl/s		
1	1,3x10 ⁻⁹	1,2x10 ⁻⁹		
2	1,7x10 ⁻⁹	2,1x10 ⁻⁹		
3	9,2x10 ⁻⁸	2,8x10 ⁻⁹		
4	1,5x10 ⁻⁹	1,5x10 ⁻⁹		
5	3,3x10 ⁻⁹	6x10 ⁻⁹		
6	2,8x10 ⁻⁹	3,2x10 ⁻⁹		

➤ the mechanical cycling test had shown no impact on the leak rate for the CuNi tube of the SC-cable!



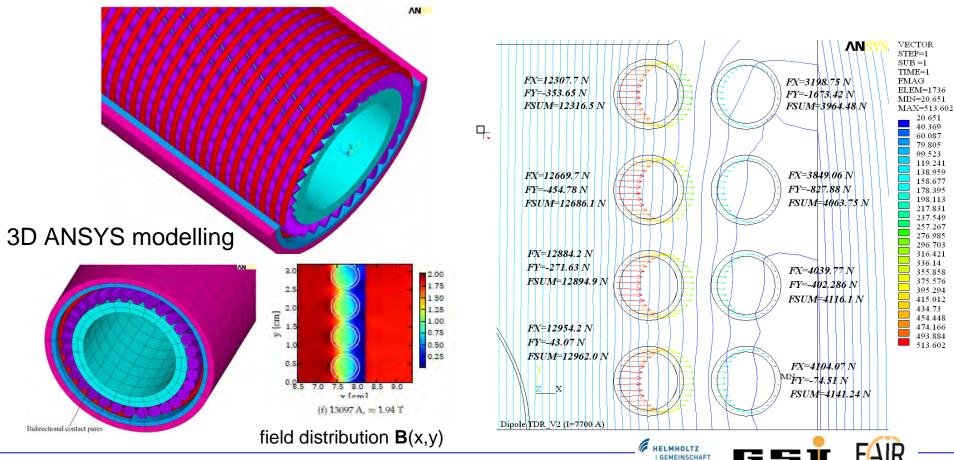

Mechanics: Cable -- FEM Analysis

ANSYS calculations for fatigue behaviour and structural integrity:

NUMBER OF CYCLES TO FAILURE OF THE CUNI TUBE AS A FUNCTION OF INITIAL CRACK SIZE

- no fatigue problems
- no crack propagation problem
- tube will survive 20 years of operation

Detailed and physical accurate FEM modeling of the cable, also for further investigations

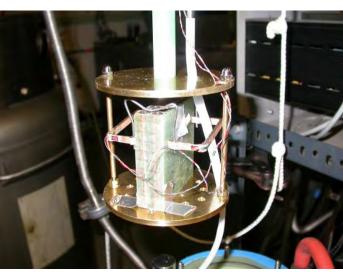


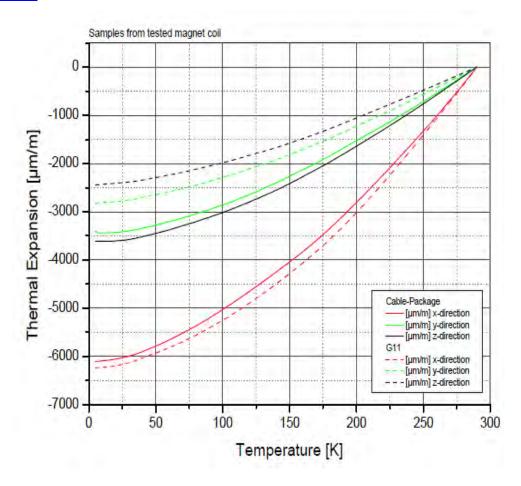
Mechanics: Cable - FEM Analysis

- study of structural integrety of the cable
- analysis of the thermo-mechanical properties
- impact of the load cycles on the coil pack > 2*108 cycles

E. Fischer, MAC Meeting February 11th 2010

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
 - 1. Test of the cable
 - 2. Test of the coil pack
 - 3. Integral test
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

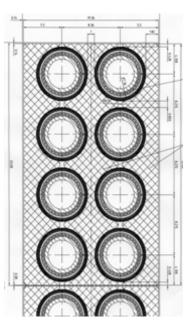



Coil package: thermal expansion

Test of the support structure material

▲ Thermal expansion measurements

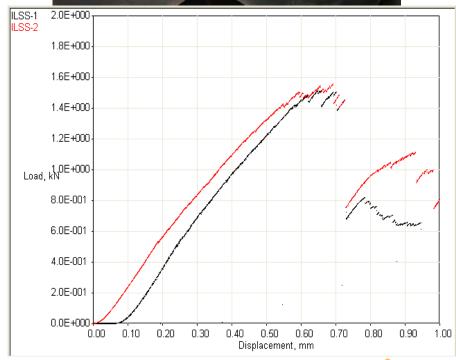
Measurement result of the thermal contraction for the coil pack



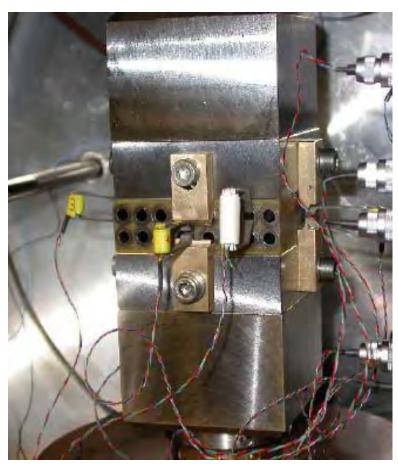
Coil package tests: Interlamination shear

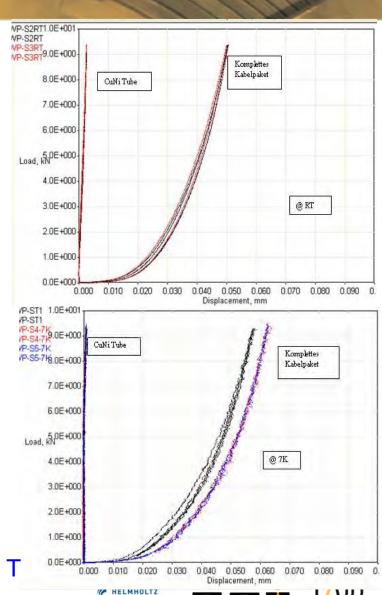
Coil support structure:

- reduction of point loads
- accurate positioning



G11 Sample	T K	Stiffness N/mm	E Modul GPa	Fmax N	ILSS MPa
Sample 1	7	162,8	32,9	1,515	57,8
Sample 2	7	163,9	33,1	1,559	59,1

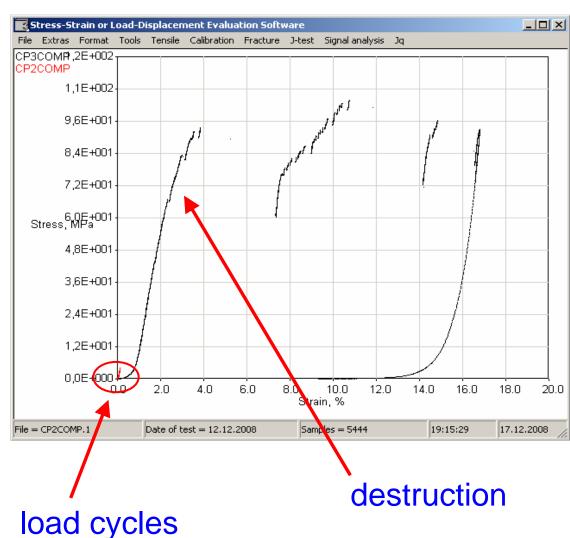




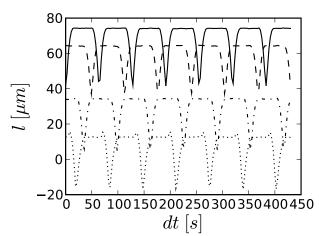
Coil package: stiffness @ RT, 7K

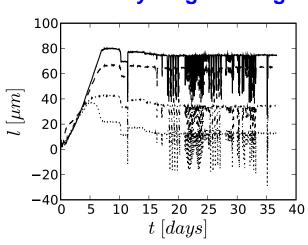
Measurement of the coil pack stiffness at room temperature and at 7 K.


movement of the coil windings $< 5 \mu m$ at $B_{max} = 2 T$



Coil package tests: cycling - destruction

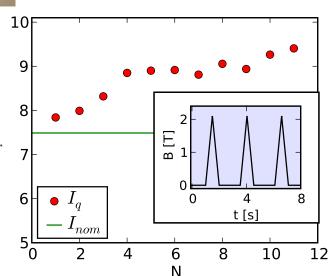

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
 - 1. Test of the cable
 - 2. Test of the coil pack
 - 3. Integral test
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion



Mechanics: Integral test

The movement of the coil versus the yoke

▲ while cycling the magnet



DC Quench training ►

cycling tests

inset on the right: the strongest cycle mode of the magnet continuously tested during one week and up to now for 5*10⁵ cycles. ▼

▲ during cool down and cycling

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
 - Dependence on Si content
 - Steel Comparison
 - Selection
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

Magnetic steel

The choice of the electrical steel, best appropriate for the operation parameters of the main SIS100 magnets, is crucial for an optimal adjustment of the requirements to achieve high field quality, minimum AC losses in the yoke and a safe, reproducible production technology.

The search for this was made in both principle possible directions, i.e. analysing the intrinsic properties of the Si-donated Fe system as well as the available commercial steel. In the latter case also the impact of the technological and real application effects was discussed.

hysteresis losses:

$$P_h = \frac{1}{2} k_h H_C B_{\text{max}} \frac{dB}{dt}$$

eddy current losses

$$W_h = c_h B_{\text{max}}^2 = \underbrace{k_h H_C}_{c_h} B_{\text{max}}^2$$

optimal B-H curve (high permeability at low B, high M_s ~ 2.1 T) characteristic parameters:

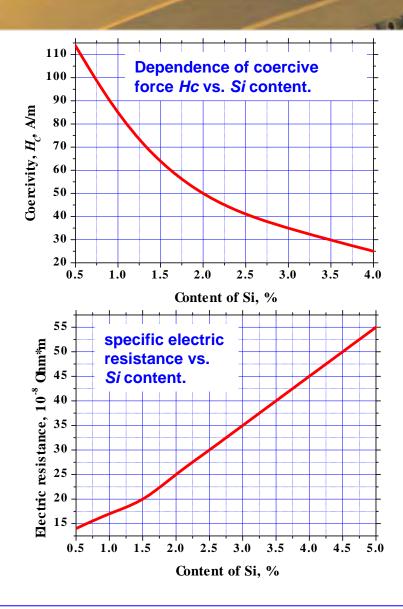
d thickness of steel sheet

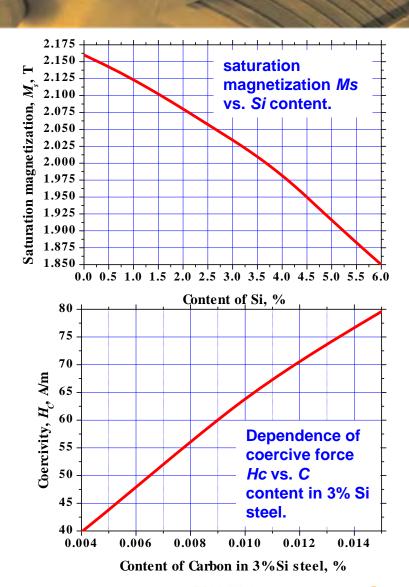
H_c coercive force

 μ_{max} maximum permeability

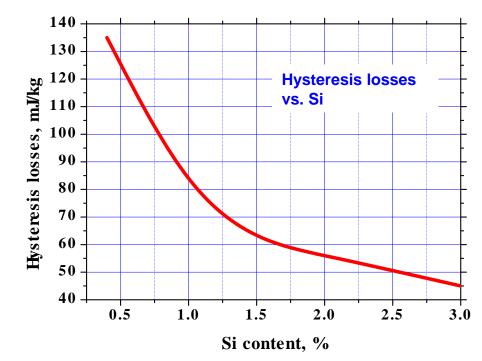
 M_s magnetisation saturation

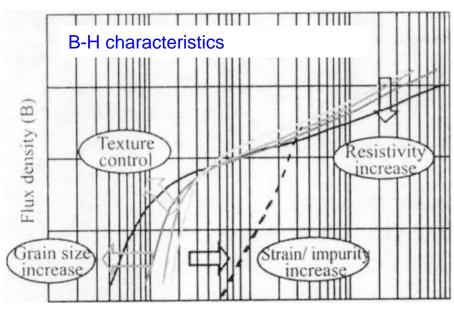
 \mathbf{W}_{hyst} specific hysteresis losses


ρ electric resistivity



Magnetic steel: Si content

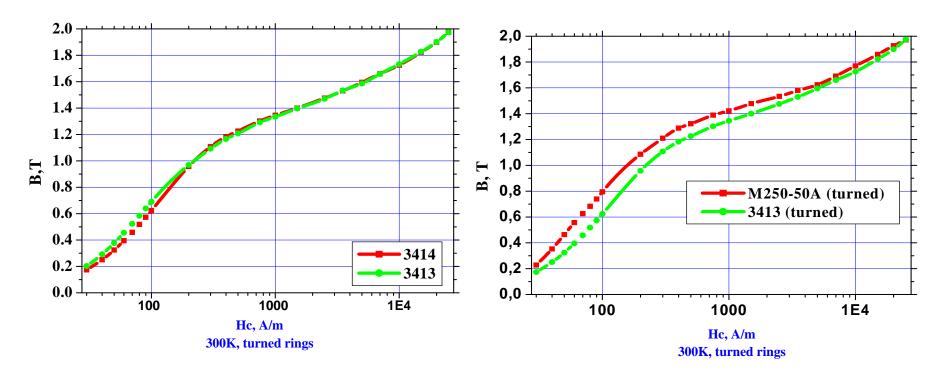




Magnetic steel: Influence of Si

Parameter	Approximation function	unit
Saturation magnetization	<i>M</i> _s = 2.16-0.048 * Si	Т
Coercive force	$H_c = 120 - 30 * Si$	A/m
Resistivity	$\rho = 0.1 + 0.12 * Si$	$\mu\Omega$ m
Density	d = 7.865 - 0.065 * Si	kg/dm ³

■ Dependence of the main parameters on Si content in %

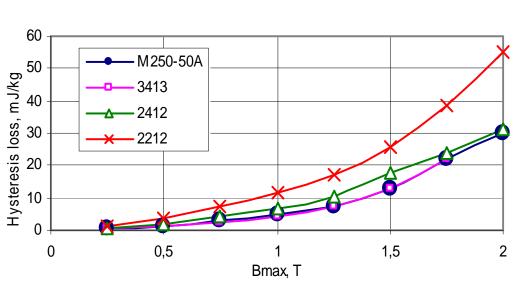

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
 - Dependence on Si content
 - Steel Comparison
 - Selection
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

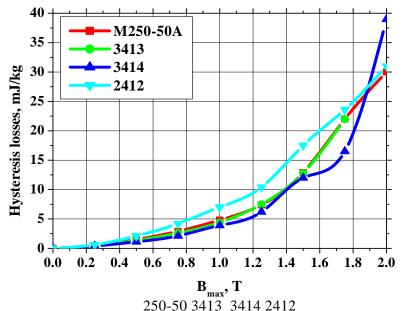
Magnetic steel: Comparison of Si steels

Measurements: Hc and B-H curves

Hc [A / m]	300 K	77 K	4.2 K
ET3413	21.3	20.8	21
ET3414	20.3	19.5	19.5
Stabocor M250-50A	31.53	30.5	30.9

Нс	[A / m]	Along rolling	Across rolling	Mixed
3413, B _{max} = 1.64 T		16	48	28
3414 , $B_{max} = 1.64 T$		26	41	32
Stabocor M250-50A, B _{max} =	= 1.67 T	30	50	39





Magnetic steel: Comparison of Si steels

Measured hysteresis loss in unipolar cycles 0 - B_{max} at 4.2 K

Steel	ET3413	M250-50	M600-100	M700-100
Ms [T]	2.055	2.035	2.035	2.1
Hc [A/m]	20 - 30	30 - 33	30 - 33	35 - 40

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
 - Dependence on Si content
 - Steel Comparison
 - Selection
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

Magnetic yoke: Selecting the steel

- There are large uncertainties in magnetic properties of steels and one should be very careful when optimising the 2D cross section:
 - measurement method (strip, rings, static (low frequencies) or 50 Hz);
 - anisotropy;
 - technology (production, stamping, turning);
 - operating temperature;
 - tension.
- An approved agreement about correct use is required by users of the B-H data and its recalculation for different cases.
- Accurate test measurements and detailed recalculations are required to obtain a high resolution magnetic field description.

Magnetic steel: Conclusion for steel selection

- Commerically available steels:
 - comparison: catalog and measurement data (GSI @ RT, IHEP @ RT, 4K)
- Hysteresis loss: isotropic and anisotropic comparable
 - thickness 0.5mm: M250-50 ↔ ET2414, ET3414
 - thickness 1 mm: M250-50 ↔ M600-100
- Steel development: costly, time consuming (not an option)
- Full size magnet: M700-100
- Natural choice: M250-50 or equivalent ET3414, ET2414
- Steel in series → requirements series production → e.g reliable material properties

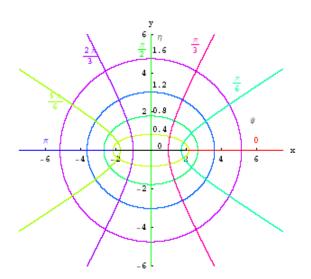
- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

Magnetic Field Description: Circular multipoles

Standard field description:

$$\mathbf{B}(\mathbf{z}) = B_y + iB_x = \sum_{m=0}^{\infty} \mathbf{C_m} \left(\frac{\mathbf{z}}{R_{ref}}\right)^m.$$

- \bullet convergent also outside R_{ref}
- satisfactory field description only for analytical data
- cofficients \rightarrow FT on data on R_{ref} (FEM, measurement) \rightarrow thus with artifacts



Magnetic Field Description: Elliptic multipoles

- allow to represent the field in the whole aperture of SIS 100 / NESR / CR
- allow to give a consise error propagation for rotating coil measurements in elliptic aperture
- allows to calculate circular multipoles within the ellipse

Plane elliptic coordinates η , ψ . Here the foci F, F' are at ± 2 .

Field expansion:

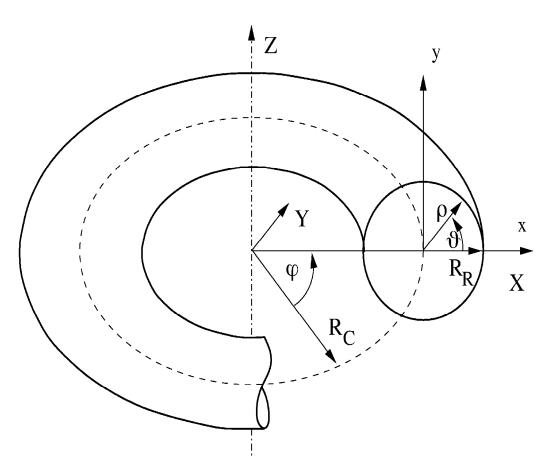
$$\mathbf{w} = \eta + i\psi$$

$$\mathbf{B}(\mathbf{w}) = \frac{\mathbf{e_0}}{2} + \sum_{n=1}^{\infty} \mathbf{e}_n \frac{\cosh[n(\eta + i\psi)]}{\cosh(n\eta_0)}$$

$$\eta = const...$$
 hyperbola $\psi = const...$ ellipse

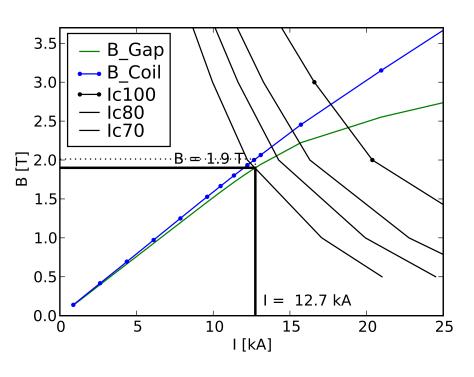
Expansion coefficients:

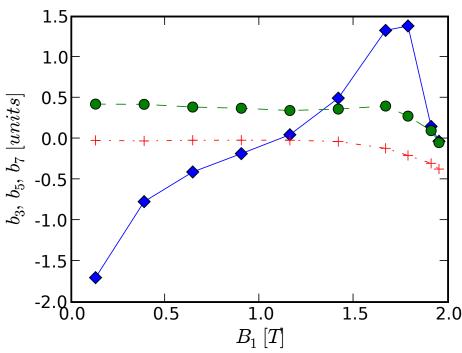
$$\mathbf{e}_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{B}(\mathbf{w} = e \cosh(\eta_0 + i\psi)) \times \cos(n\psi) d\psi.$$


Linear Analytic Transformation to Circular Ones

Magnetic Field Description: Toroidal multipoles

Local Toroidal Coordinates ρ , ϑ , ϕ


$$X + iY = R_c h e^{i \phi}$$

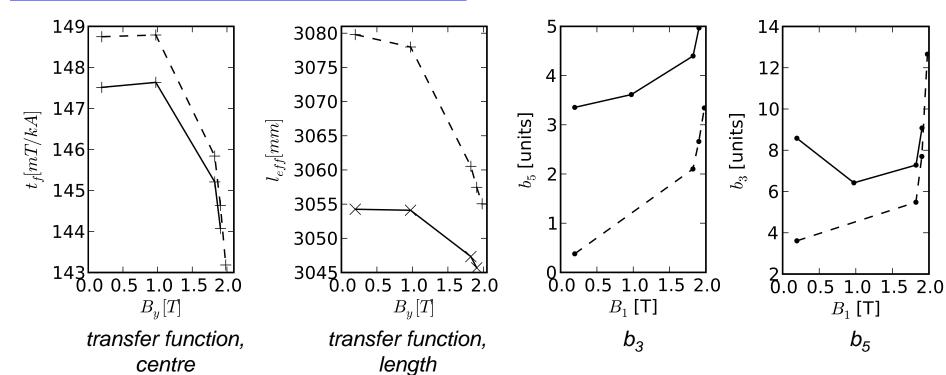

$$h = 1 + \epsilon \rho \sinh \vartheta$$

$$\varepsilon = R_R / R_c << 1$$

Magnetic Field: 2D calculations for the CSLD

load line and margin

b3, b5, b7



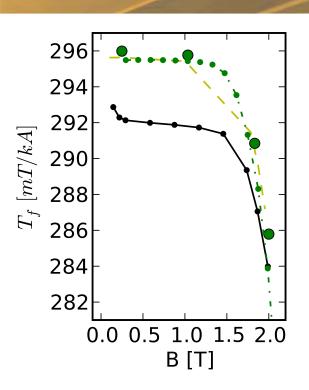
Magnetic Field: 3D Field quality

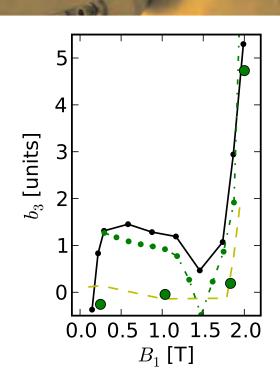
Calculated characteristics of the CSLD

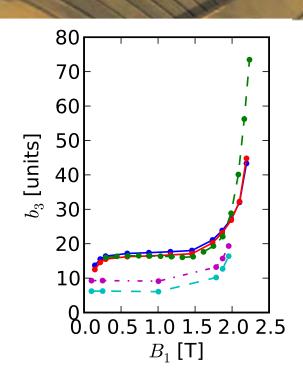
——— Rogowsky profil

---· Rectangular ends

iron non linearity \rightarrow 4 % rectangular end \rightarrow 1 % Rogowsky end \rightarrow 0.5 %


Calculation quality and measurement results


- Curved single layer dipole
 - not yet built
 - presented data → calculations
- First full size dipole
 - thoroughly measured → mole, mapper
 - multipoles calculated → distributed (e.g. beam dynamics calculations)
- Comparison: measurements ↔ calculations



Magnetic Field: S2LD-calculation & measurements

Centre: black: measurement

green: ANSYS (2 models)

yellow: TOSCA 3D

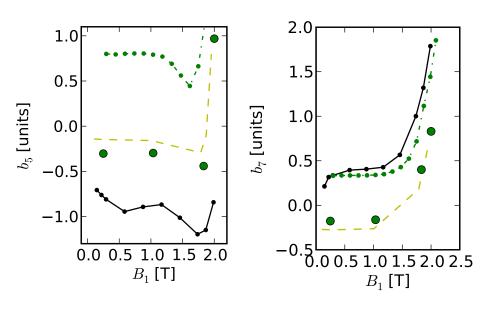
End CS: blue: measurement

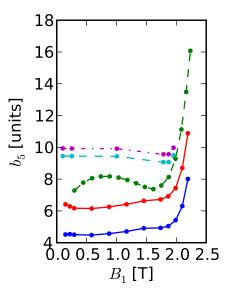
cyan: TOSCA 3D

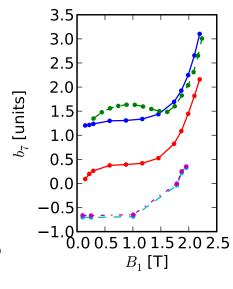
green: ANSYS

End NCS: red: measurement

magenta: TOSCA 3D


green: ANSYS





Magnetic Field: S2LD-calculation & measurements

Centre: black: measurement

green: ANSYS (2 models)

yellow: TOSCA 3D

End CS: blue: measurement

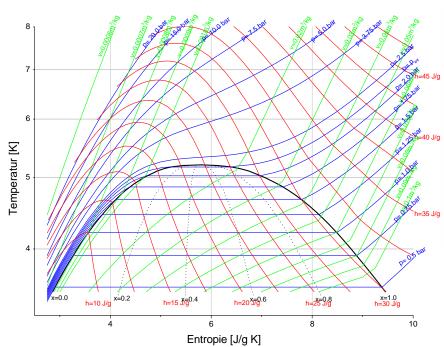
cyan: TOSCA 3D

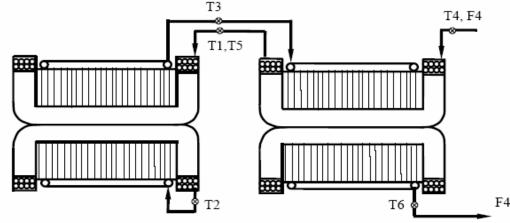
green: ANSYS

End NCS: red: measurement

magenta: TOSCA 3D

green: ANSYS


- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
 - measurement on equivalent model
 - consequences for the coil design
 - BNG magnet: measured losses and parameterisation
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion



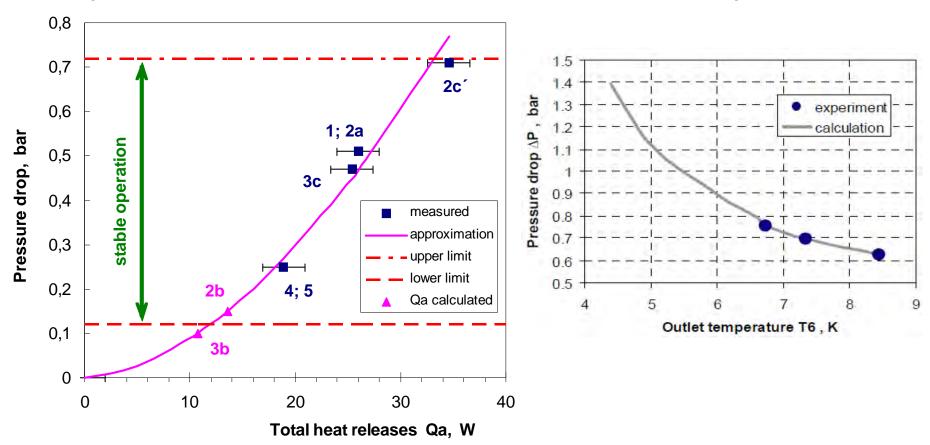
Losses & hydraulics: equivalent model

The hydraulic restistance of the coil limits the feasibility of the cycles!

T – S phase diagrams for He⁴

Cooling schema of the equivalent dipole model:

T1, T2,... T6 – temperature measurement points, F4 - measured helium flow. The two-phase helium flow enters the laminated yoke after cooling the two short coils all connected in series.



Losses & hydraulics: feasible cycles

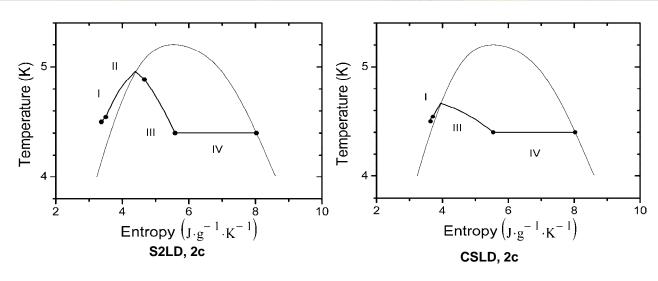
The hydraulic restistance of the coil limits the feasible cycles!

Confirmed by the Measurements on the Full Size Straight Dipole (BNG)

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
 - measurement on equivalent model
 - consequences for the coil design
 - BNG magnet: measured losses and parameterisation
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

Losses & hydraulics: alternatives

Parameter \ Version	straight	curved	C2LD-a	CSLD
Maximum field, T	2.11	1.9	1.9	1.9
Magnetic length, Tm	2.756	3.062	3.062	3.062
Turns per coil	16	16	16	8
Usable aperture, mm ²	130 · 60	115 · 60	115 · 60	140 · 60
Cables				
Number of strands	31	31	38	23
Outer diameter, mm	7.36	7.36	7.5	8.25
Cooling tube inner diameter, mm	4	4	4.7	4.7
Length of the cable in the coil, m	110	110	110	57
Bus bars length, m	37	39	39	39
Operating current	7163	6500	6500	13000
Critical current @ 2.1 T,	11000	11000	11000	10040
4.7 K	11900	11900	11900	19840
Wires				
Strand diameter, mm	0.5	0.5	0,46	0.8
Filament diameter, µm	2.5 - 4	2.5 - 4	2.5 - 4	3.5 - 4
Filament twist pitch, mm	4 - 5	4 – 5	4 - 5	5 - 8
loss and hydraulic		•		·
Static heat flow, W	7	7	7	7
Heat load to bus bars, W	0.5	0.5	0.5	0.5
	cycle 2	2c		
AC losses, W	36.3	35.4	35.4	35.7
Pressure drop, bar	1.10	1.15	0.604	0.389
T_{max} of He in the coil	4.94	4.95	4.78	4.64
(for $x_6 \approx 1$), K				_
triangular cycle				
AC losses, W	75.1	74.0	74.0	74.6
Pressure drop, bar	1.14	1.20	0.657	0.486
T_{max} of He in the coil, K	5.08	5.10	4.86	4.72
	at $T_6=8K$	at $T_6=8K$	at $T_6=8K$	at $T_6=7K$


- The original Nuclotron cable had to be adapted for the main parameters of the SIS100 dipole.
- An optimisation of the sc wire characteristics is not sufficient.
- Even if the triangular cycle will not be requested, the design change was unavoidable due to the failure of cycle 2c!
- The optimal solution of the hydraulic boundary condition is the Curved Single **Layer Dipole providing the continuously** triangular cycle and a larger aperture for a stable and cryo cooled beam pipe with save margins.

Losses & hydraulics: phase diagram

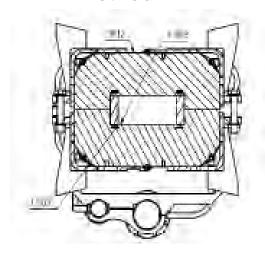
The straight Two Layer
Dipole (S2LD) and the
Curved Single Layer
Dipole (CSLD) at intensive
ramping modes

new geometry of the cable ⇒reducing hydraulic resistance ⇒ stable operating 2c and Λ cycle

T – S diagrams for the 2c and Λ operation Helium flow trough the bus

bars I, the coil II - III (inner - outher layer) and the iron yoke IV at cycles - 2c (left) and triangular (right)

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
 - measurement on equivalent model
 - consequences for the coil design
 - BNG magnet: measured losses and parameterisation
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion



Losses & hydraulics: AC losses for BNG dipole

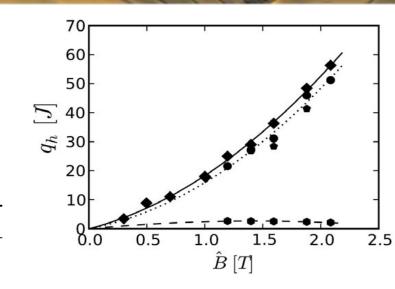
$\frac{dB/dt}{[T/s]}$	B_{max} $[T]$	$\begin{array}{ c c }\hline & t_d \\ & [s] \end{array}$	f $[Hz]$	$ar{P}[W]$	$T_{out} = [K]$	dP [mbar]	TM08 K]	<i>TM</i> 09 [K]	TM11 [K]	<i>TM</i> 12 [<i>K</i>]
1	2.1	0	0.23	30	6	640	6.5	7.6	6.4	6.1
1.5	1.4	0	0.51	30	5.75	658	6.34	7.5	6.2	5.9
1.5	1.6	0	0.44	33	6.49	667	6.9	7.8	6.8	6.5
1.5	1.9	0	0.31	35	7.12	674	7.4	8.1	7.3	7.0
1.5	2.1	0	0.33	37	7.8	691	7.9	8.4	7.9	7.5
2	1.9	0	0.49	43	9.6	735	9.2	9.4	9.2	8.9
2.5	2.1	0.8	0.37	41	8.9	740	8.8	9.1	8.9	8.5
3	1.9	0.8	0.45	43	9.2	780	9.0	9.3	9.1	8.7
3.5	1.9	0.8	0.49	43	9	775	8.9	9.1	9.0	8.5
4	1.9	1.6	0.37	40	8.4	733	8.3	8.7	8.4	8.0
4	2.1	1.5	0.39	43	8.08	793	8.1	6.9	8.3	7.7

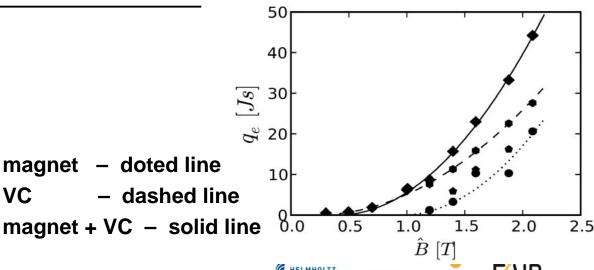
- calorimetric method
- VI method

AC loss: estimates and measurements for the FAIR cycles

cycle	$B_{max}[T]$	$t_f[s]$	$f_c[Hz]$	$ar{P}_t[W]$	$Q_t[J]$	$ar{P}_v[W]$	$Q_v[J]$	$\bar{P}_m[W]$	$Q_m[J]$	$\bar{P}_{VI}[W]$	$\bar{P}_{C}[W]$:
1	1.2	0.1	0.71	26.8	40.4	10.7	15.9	14.6	22.7		
2a	1.2	0.1	0.71	26.8	40.4	10.7	15.9	14.6	22.7	16.4	18.
2b	0.5	0.1	1.00	4.8	7.8	3.5	4.4	3.6	5.9		
2c	2.0	0.1	0.55	49.1	92.3	14.9	28.1	34.7	65.5		
3a	1.2	1.3	0.38	14.4	40.4	5.8	15.9	7.8	22.7	9	12.
3b	0.5	1.0	0.53	2.5	7.8	1.8	4.4	1.9	5.9		
3c	2.0	1.7	0.29	26.3	92.3	8.0	28.1	18.6	65.5	23	24.
4	2.0	0.1	0.20	17.9	92.3	5.4	28.1	12.6	65.5	15	17.
5	2.0	0.1	0.20	17.9	92.3	5.4	28.1	12.6	65.5		
\wedge	2.1	0	1.05	96.7	101.7	29.4	30.9	69.6	73		

Losses & hydraulics: parametrisation


$$P_{\wedge} = q_h(B_{max})f + q_e(B_{max})f^2$$
 $f = 1/\tau_{\wedge}$


$$q_h = h_a B_{max} + h_b B_{max}^2 \qquad q_e = \left\{ \begin{array}{ll} 0 & B_{max} < B_{th} \\ e_a \left(B_{max} - B_{th}\right)^2 & B_{max} \ge B_{th} \end{array} \right.$$

Component	ha	h_b	e_a	B_{th}
Magnet		8.3	15.5	0.95
Vacuum Chamber		-1.3	8.0	0.2
Total		8.3	15.5	0.4

VC

results agree well with calculations (ANSYS, extrapolation from short model magnet measurements)

Losses & hydraulic: potential reduction

Extrapolation to the curved single layer dipole

for ∧ cycle

Cable → low loss wire

≈ 10 W↓

Yoke steel → M700-100 (BNG) → M600-100

≈ 12 W ↓

Magnet ends → rectangular →

eddy current reduction

 \approx 7 W \downarrow

Vacuum chamber cooling → conduction cooling

≈ 6W↓

Total

≈ 35 W ↓

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

Vacuum chamber: requirements

cryopump functionality for the operation with high intensity intermediate charge state heavy ions:

- **1** cold surface \rightarrow cryogenic adsoption pump 10^{-12} mbar for 20 years, infinitely refreshable
- ② ramped field → eddy currents in conducting materials → AC losses → field distortion minimise by geometry and material selection
- mechanical stable → cryostat vacuum break (1 bara)
- beam image current
- shield beam (skin depth)

The vacuum chamber design was based on S. Wilfert, K. Keutel SIS 100 Kryogene Vacuumkammern Otto-von-Guericke-Universität, 2004.

Vacuum chamber: current design

- cooling → separate tubes
- mechanis → ribs
- field distortion → stainless steel (Böhler Uddenholm)

but

- eddy current loops (ribs + cooling tubes)?
- final temperature?
- contact to magnet / coil?

short model and full size test chamber of the BNG dipole with mechanical stabilizing rips and additional cooling tubes

Vacuum chamber: measured temperatures

The temperature of the vacuum chamber for the different FAIR cycles at He flow 0.17 g/s

	B_{min} [T]	B_{max} [T]	dB/dt [T/s]	t_f [s]	<i>t_p</i> [s]	t_c [s]	<i>T_{in}</i> [K]	Tout [K]
2a	0.24	1.2	4.0	0.1	0.70	1.408	5.12	15.46
3a	0.24	1.2	4.0	1.3	0.70	2.608	5.09	10.03
3c	0.24	2.0	4.0	1.7	0.68	3.408	5.14	12.66
4	0.24	2.0	4.0	0.1	3.88	5.008	5.09	9.84
2b	0.24	2.0	4.0	0.1	1.	1.4	magnet	can not
2c	0.24	2.0	4.0	0.1	0.7	1.82	be op	erated
\wedge	0	2.0	4.0	0	O	1	in thes	e cycles

The existing design for the vacuum chamber was tested at the first full size dipol:

fulfills the requirements for cryo cooling the inner surface of the beam pipe below 15 K and is mechanically stable,

but:

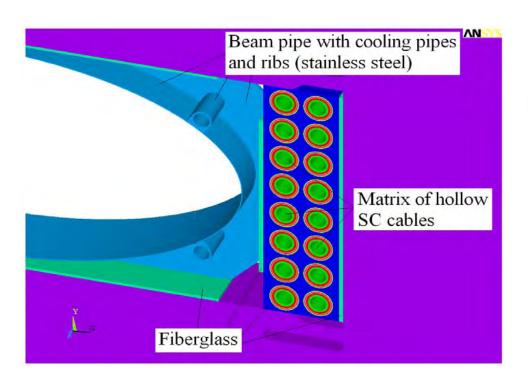
- > significant losses and additional cooling circuit
- magnetic field distortions

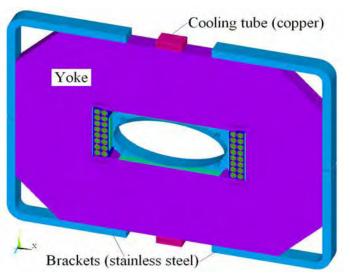
Alternatives?

Vacuum chamber: temperature fields

Calculation Procedure

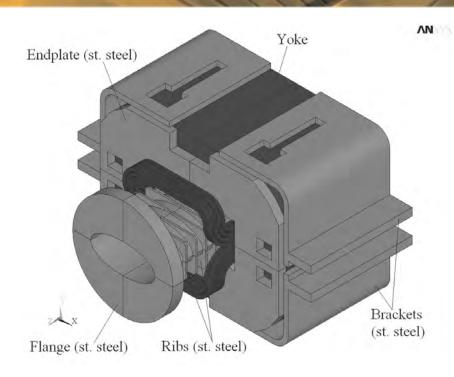
- vacuum chamber in defined contact with yoke and coil
- transient analysis steady state after 60 cycles
- used steady state mode for thermal calculations
- Different options studied
 - a) design as built by BNG
 - b) without coolant in the tubes
 - c) without ribs
- calculating the magnetic field within the vacuum chamber





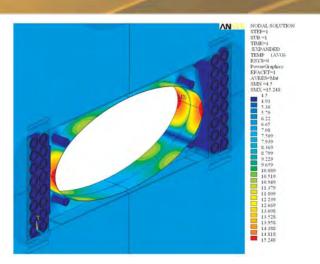
Vacuum chamber: temperature fields

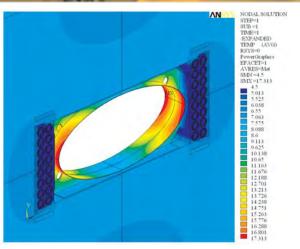
- central part -- periodic "quasi 2D" model
- end part 3D "short end model "
- > transient analysis: steady state after 60 cycles
- Additional 25 W heat load (= 1/3 of the magnet)

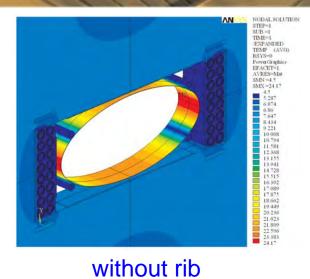


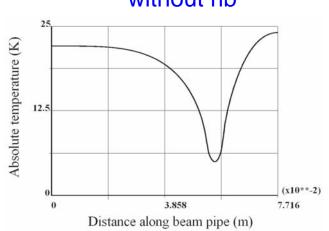
Vacuum chamber: Calculated average power

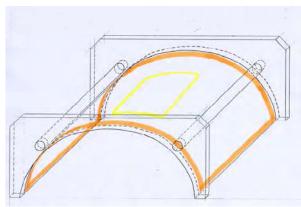
cycle	2	a		2b		2c		\wedge
J	Н	E	Н	E	Н	E	Н	E
		n	nagnet	centra	al part			
yoke	0.6	0.1	3.6		11.8	0.3	23.7	0.6
-			magn	et end	part			
brackets				0.4		0.7		1.2
endplates		1.1		3.3		3.8		8.0
yoke		0.4	0.8	1.5	2.2	3.0	4.0	5.3
		be	am pip	e cent	ral par	t		
pipe		1.7		4.7	•	6.7		13.9
tubes		0.7		1.9		2.7		5.6
ribs		0.1		0.2		0.3		0.6
		Ł	beam p	ripe en	d part			
pipe		0.3		0.7		0.9		1.9
				Total				
magnet								
centre	0	.7		3.9	•	12.2	2	24.5
end	1	.8		6.0		9.7	•	18.5
coil	(5		1		8		16
total	8	.5	•	10.8		29.5	Į	57.0
vacuum ch	ıambeı	ſ						
	2	.8		7.6	•	10.6	2	22.2
total load								
	11	.2		18.4	4	40.5	7	79.1

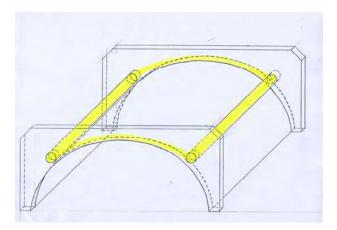




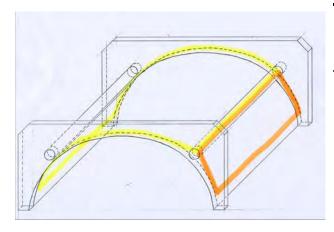



Vacuum chamber: Calculated temperatures





Vacuum chamber: Analytical model


Resistance of different components of VC and losses in the 4 cooling pipes

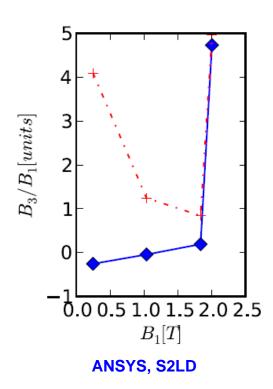
Loop1: vacuum chamber

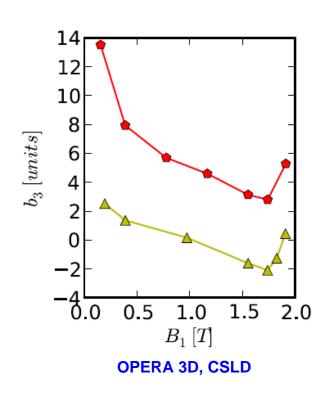
Loop2: pipe - rib - pipe

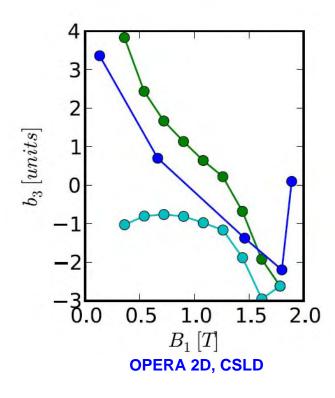
Loop3: chamber - rib - pipe

Part	decay constant $_{ au}$	current A	$\begin{array}{c} \text{resistance} \\ \text{m}\Omega \ / \ \text{m} \end{array}$	loss _{pipes} mW / m
chamber	22		5	
tubes	5		27	
Loop 1		0.1	30	2
Loop 2		2.7	variable	0.8
Loop 3		1.7	265	0.3

Vacuum chamber: Field deterioration







Vacuum chamber: Field deterioration

<u>Sextupole</u>

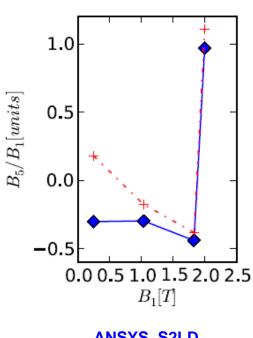
S2LD with ANSYS

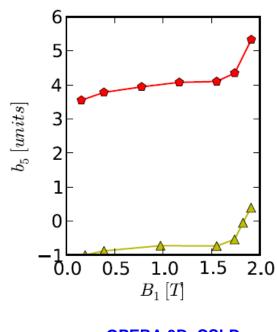
static - blue line transient rump up – red line

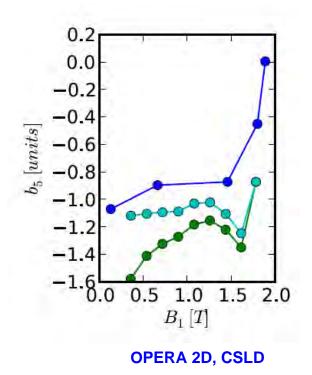
OPERA 3D:

static yellow line transient rump up - red line

OPERA 2D:


- blue line static transient rump up - green line transient rump down – cyan line





Vacuum Chamber: Field deterioriation

Dekapole

ANSYS, S2LD

OPERA 3D, CSLD

S2LD with ANSYS

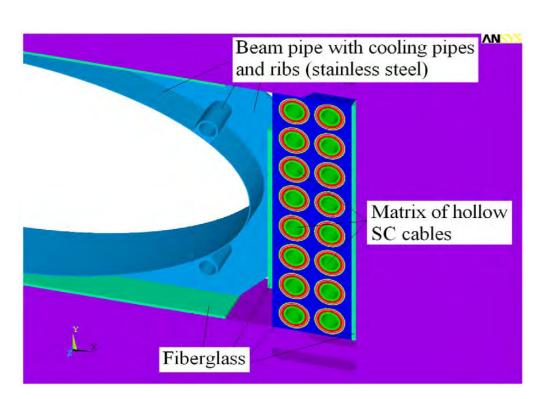
static - blue line transient rump up - red line

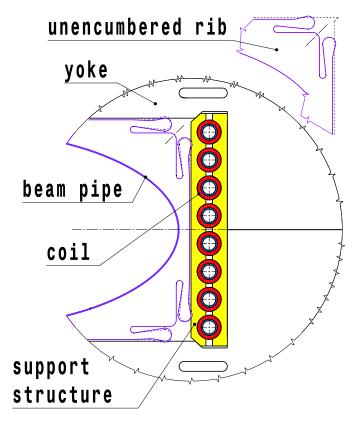
OPERA 3D:

static - yellow line transient rump up - red line

OPERA 2D:

- blue line static - green line transient rump up transient rump down - cyan line



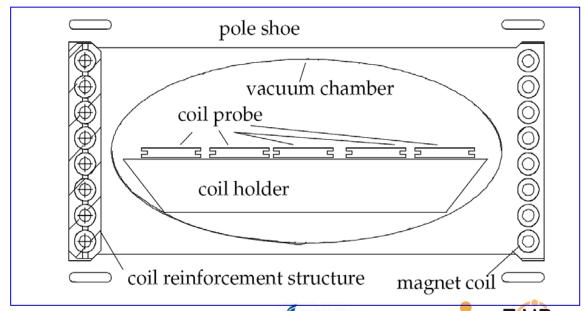


Vacuum Chamber: Cooling options

additional cooling ▼

Conduction cooling V

Stand: 09. Sept 2009



Elastic rib for

Vacuum Chamber: Magnetic field measurement

- 1. Field → magnet measured without vacuum chamber
- 2. FEM model → adjust B-H curve → match field quality
- 3. Vacuum chamber → measured within nc magnet → material properties
- 4. VC installed in magnet → measured with "woodlouse"

- 1. Introduction
- 2. Main magnet components
- 3. Mechanical stability of the coil windings
- 4. Magnetic steel
- 5. Magnetic field design
- 6. Losses and hydraulic limits
- 7. Vacuum chamber and temperature fields
- 8. Milestones towards a curved single layer dipole
- 9. Conclusion

single layer dipole	2002	March: Decision to start high current Nuclotron cable larger aperture, hydraulic limits, AC losses
r C	2003	Cooling power calculation; comparison to other cables
Şe		Strands tested, design for 4 T magnet
<u>a</u>	2004	Dipole magnet with single layer coil → design and tested
g <u>e</u>		Nuclotron cable → strands direct contact to helium
Sin	2005	Nuclotron cable cos θ magnet design \rightarrow 4 T
curved		Review of SIS100 cooling concept
2	2006	Increase of magnet aperture for beam dynamics, triangular cycle
the c		hydraulic limits \rightarrow necessitated single layer coil : presented at internal review
		Equivalent model test @ JINR / Dubna → confirming calculations
/ar		Decision for 2 layer magnets (straight and curved)
toward	2007	10 Hz Quadrupole, sc wire development for high current cable
		flexible cabling machine at BNG
stones	2008	Status and limits of current SIS100 magnets presented at WAMSDO, ASC08
Milesto	2009	Test of BNG magnet confirms predictions: no 2c
\geq		High current cable: fabrication of wires

Conclusion

- The first SIS100 prototype dipole was intensively tested.
- The magnet training, the intensive long-term ramping stability, the measured current, the magnetic field characteristics as well as the AC-loss and cooling parameters have proven the preliminary design estimations and show that the applied production technologies are working well and ready for series production.
- These tests will be completed on a second straight dipole, a curved dipole utilising a two layer coil and on a prototype quadrupole with 6 coil per pole.
- The results obtained on the first prototype dipole confirm that our methodical design work is correct and the optimised curved single layer dipole is expected to fulfil all operation requirements for the SIS100 accelerator.
- This curved single layer dipole, while not yet built, is based on a sound R&D conducted since 2002.
- The next step toward final series production of the main magnets will be constructing and testing a curved dipole with a single layer coil made of high current superconducting cable.

