FRG analysis of Quantum Spin Liquids in Heisenberg models

Nico Gneist

3.4.2019

Institute for Theoretical Physics Cologne

Quantum Spin Liquid features

- Macroscopical entanglement
- Topological order
- Strong short-range correlations
- Fractionalization
- ...

Working definition: spin systems with nontrivial ground states which are not magnetic

Quantum Spin Liquid features

- Macroscopical entanglement
- Topological order
- Strong short-range correlations
- Fractionalization

• ...

Working definition: spin systems with nontrivial ground states which are not magnetic

Spin Systems, pseudo-fermions and parton construction

•
$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

- Pseudo-fermions: $S_i^{\alpha} = \frac{1}{2} f_{i\mu}^{\dagger} T^{\alpha}_{\mu\nu} f_{i\nu}$
- Constraint for enlarging Hilbert space: $\{|\uparrow\rangle, |\downarrow\rangle\} \rightarrow \{|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle\}$

•
$$\mathcal{H} = \frac{-J}{2} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger} f_{j\beta}^{\dagger} f_{j\alpha} f_{i\beta}$$

• Parton construction [X.-G. Wen 2002]: $\mathcal{H}_{eff} = \\ \sum_{\langle ij \rangle} \left[t_{ij}^{\alpha\beta} f_{i\alpha}^{\dagger} f_{j\beta} + \Delta_{ij}^{\alpha\beta} f_{i\alpha}^{\dagger} f_{j\beta}^{\dagger} + h.c. \right]$

SU(N) Heisenberg Model [Arovas, Auerbach, 1988]

•
$$\mathcal{H} = \frac{J}{N} \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

• Pseudo-fermions: $S_i^{\alpha} = \frac{1}{2} f_{i\mu}^{\dagger} T_{\mu\nu}^{\alpha} f_{i\nu}$

•
$$S[f] = \int_{\tau} \sum_{i} f_{i\alpha}^{\dagger} \dot{f}_{i\alpha} - \frac{J}{N} \sum_{\langle i,j \rangle} f_{i\alpha}^{\dagger} f_{j\alpha} f_{j\beta}^{\dagger} f_{i\beta}$$

• Introduce $Q_{ij} \propto f_{j\alpha}^{\dagger} f_{i\alpha}$ via HS: $S_{HS}[f,Q] = \int_{\tau} \sum_{i} f_{i\alpha}^{\dagger} \dot{f}_{i\alpha} + \sum_{\langle i,j \rangle} \left(Q_{ij}^{\dagger} Q_{ij} + \left(Q_{ij}^{\dagger} f_{j\alpha}^{\dagger} f_{i\alpha} + h.c. \right) \right)$

Large N Mean Field results [Arovas, Auerbach, 1988]

Mean-field ansatz for Q_{ij} : $Q_{ij} = Q \exp(i\theta)$, with $\theta = 0$ on y-bonds Two phases: BZA (all $\theta = 0$) and π -flux ($\theta = \pm \pi/2$)

$$\partial_k \Gamma_k = \frac{1}{2} \mathsf{STr}_{\frac{\partial_k R_k}{\Gamma_k^{(2)} + R_k}} \qquad \Gamma_k = \int_{\tau} \sum_i f_{i\alpha}^\dagger \dot{f}_{i\alpha} - \frac{J_k}{N} \sum_{\langle ij \rangle} f_{i\alpha}^\dagger f_{j\alpha} f_{j\beta}^\dagger f_{i\beta}$$

Momentum space:

$$\Gamma_k = \int_{1} f_{1\alpha}^{\dagger} f_{1\alpha} - \frac{J_k}{N} \int_{1,2,3,4} f_{1\alpha}^{\dagger} f_{2\alpha} f_{3\beta}^{\dagger} f_{4\beta} \left[\cos(k_{2,x} - k_{3,x}) + \cos(k_{2,y} - k_{3,y}) \right] \delta_{1234}$$

Point-like projection s.t. vertices are only spin-dependent: $f^{\dagger}_{a\alpha} = f^{\dagger}_{\alpha}\delta(\omega_a)\delta(k_a)$

Derive flow:

 $\partial_k J_k = \beta_{J_k}(J_k)$

Result for J_k

6

Explicit symmetry breaking

- Add order parameter explicitely → enable flow into phase [Salmhofer et al., 2004]
- Suspect from mean-field: $Q_{ij} \propto f_{j\alpha}^{\dagger} f_{i\alpha}$ $\rightarrow \int_{\tau} \sum_{\langle i,j \rangle} Q_k \left[f_{i\alpha}^{\dagger} f_{j\alpha} + f_{j\alpha}^{\dagger} f_{i\alpha} \right]$

Explicit symmetry breaking

- Add order parameter explicitely → enable flow into phase [Salmhofer et al., 2004]
- Suspect from mean-field: $Q_{ij} \propto f_{j\alpha}^{\dagger} f_{i\alpha}$ $\rightarrow \int_{\tau} \sum_{\langle i,j \rangle} Q_k \left[f_{i\alpha}^{\dagger} f_{j\alpha} + f_{j\alpha}^{\dagger} f_{i\alpha} \right]$
- New ansatz:

$$\int_{\tau} \left\{ \sum_{i} f_{i\alpha}^{\dagger} \dot{f}_{i\alpha} - \frac{J_{k}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger} f_{j\alpha} f_{j\beta}^{\dagger} f_{i\beta} + Q_{k} \sum_{\langle i,j \rangle} \left[f_{i\alpha}^{\dagger} f_{j\alpha} + f_{j\alpha}^{\dagger} f_{i\alpha} \right] - \frac{I_{k}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger} f_{j\alpha} f_{i\beta}^{\dagger} f_{j\beta} \right\}$$

BZA Result

8

BZA Result

Accessing the π -Flux phase - Problem

• Flux phase requieres non-uniform bonds

•
$$\int_{\tau} \sum_{\langle i,j \rangle} Q_k \left[f_{i\alpha}^{\dagger} f_{j\alpha} + f_{j\alpha}^{\dagger} f_{i\alpha} \right]$$
fixes same value on each bond

Accessing the π -Flux phase - Problem

• Flux phase requieres non-uniform bonds

•
$$\int_{\tau} \sum_{\langle i,j \rangle} Q_k \left[f_{i\alpha}^{\dagger} f_{j\alpha} + f_{j\alpha}^{\dagger} f_{i\alpha} \right]$$
fixes same value on each bond

- introduce anisotropic couplings $Q_k^{(*),1,2,3,4}$
- need sublattice structure!

Accessing the π -Flux phase - Solution

- 4 Sublattices: ABCD , e.g. $f_{i\alpha} \rightarrow f^A_{i\alpha}$
- Couplings example: $\int_{\tau} \sum_{\langle i,j \rangle} Q_k^{(2)} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(D)}$ $\int_{\tau} \sum_{\langle i,j \rangle} Q_k^{*(2)} f_{j\alpha}^{\dagger(D)} f_{i\alpha}^{(A)}$
- same for $Q_k^{(\ast)(2,3,4)}$ and $J_k^{(1,2,3,4)}$

Complete ansatz for π -Flux phase

•
$$\Gamma_{k} = \int_{\tau} \left\{ \sum_{i} f_{i\alpha}^{\dagger} \dot{f}_{i\alpha} - \frac{J_{k}^{(1)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(C)} f_{j\beta}^{\dagger(C)} f_{i\beta}^{(A)} - \frac{J_{k}^{(2)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(A)} - \frac{J_{k}^{(2)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(A)} - \frac{J_{k}^{(2)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(C)} f_{j\beta}^{\dagger(C)} f_{i\beta}^{(B)} - \frac{J_{k}^{(4)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(B)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(B)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(B)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(B)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(D)} f_{i\beta}^{\dagger(D)} f_{i\beta}^{\dagger(D)} + \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(D)} + \frac{J_{k}^{$$

Complete ansatz for π -Flux phase

•
$$\Gamma_{k} = \int_{\tau} \left\{ \sum_{i} f_{i\alpha}^{\dagger} \dot{f}_{i\alpha} - \frac{J_{k}^{(1)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(C)} f_{j\beta}^{\dagger(C)} f_{i\beta}^{(A)} - \frac{J_{k}^{(2)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(A)} - \frac{J_{k}^{(2)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(A)} - \frac{J_{k}^{(3)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{\dagger(C)} f_{j\beta}^{\dagger(C)} f_{i\beta}^{(B)} - \frac{J_{k}^{(4)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(B)} - \frac{J_{k}^{(A)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(B)}$$

$$\begin{split} &+ \sum_{\langle i,j \rangle} Q_k^{(1)} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(C)} + \sum_{\langle i,j \rangle} Q_k^{(2)} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(B)} & \text{SYMMETRY BREAKING TERM} \\ &+ \sum_{\langle i,j \rangle} Q_k^{(3)} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(C)} + \sum_{\langle i,j \rangle} Q_k^{(4)} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(C)} \\ &+ \text{h.c. order parameters} \end{split}$$

Complete ansatz for π -Flux phase

•
$$\Gamma_{k} = \int_{\tau} \left\{ \sum_{i} f_{i\alpha}^{\dagger} \dot{f}_{i\alpha} - \frac{J_{k}^{(1)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(C)} f_{j\beta}^{\dagger(C)} f_{i\beta}^{(A)} - \frac{J_{k}^{(2)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(A)} - \frac{J_{k}^{(2)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(A)} - \frac{J_{k}^{(3)}}{N} \sum_{\langle ij \rangle} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{\dagger(D)} f_{j\beta}^{\dagger(D)} f_{i\beta}^{(B)} \right\}$$

$$\begin{split} &+ \sum_{\langle i,j \rangle} Q_k^{(1)} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(C)} + \sum_{\langle i,j \rangle} Q_k^{(2)} f_{i\alpha}^{\dagger(A)} f_{j\alpha}^{(B)} & \text{SYMMETRY BREAKING TERM} \\ &+ \sum_{\langle i,j \rangle} Q_k^{(3)} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(C)} + \sum_{\langle i,j \rangle} Q_k^{(4)} f_{i\alpha}^{\dagger(B)} f_{j\alpha}^{(C)} \\ &+ \text{h.c. order parameters} \end{split}$$

+ 32 new couplings GENERATED COUPLINGS

Results for $\pi\text{-flux}$ ansatz

Summary and Outlook

- Introducing FRG approach for Spin Liquid phases
- Reproduces both known phases of Large N SU(N)-model on square lattice
- Sublattice approach generalizable for other geometries (Kagome, Honeycomb,...)
- Constraint can be implemented by Popov-Fedotov
- Next stop: Kitaev model

