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Schlessinger Point Method (SPM)

Given a finite set of N data points (xi, fi) we construct the rational interpolant
p(x)/q(x) with polynomials p(x) and q(x) that is given by the continued fraction

p(x)/q(x) = CN (x) =
f1

1 +
a1(x− x1)

1 +
a2(x− x2)

... aN−1(x− xN−1)

,

where the coefficients ai are given recursively by a1 = f1/f2−1
x2−x1

and

ai =
1

xi − xi+1

(
1 +

ai−1(xi+1 − xi−1)

1+

ai−2(xi+1 − xi−2)

1+
· · · a1(xi+1 − x1)

1− f1/fi+1

)
The polynomials (p(x), q(x)) are of order (N/2− 1, N/2) for an even number of input

points and ((N − 1)/2, (N − 1)/2) for an odd number of input points

[L. Schlessinger, Physical Review, Volume 167, Number 5 (1968)]

[R.W. Haymaker and L. Schlesinger, Mathematics in Science and Engineering, Volume 71, Chapter 11 (1970)]

[H.J. Vidberg and J.W. Serene, Journal of Low Temperature Physics, Vol. 29, Nos. 3/4 (1977)]

[R.-A. T., I. Haritan, J. Wambach, N. Moiseyev, Physics Letters B 774 (2017) 411-416]

[R.-A. T., P. Gubler, M. Ulybyshev, L. v. Smekal, Comput.Phys.Commun. 237 (2019) 129-142]
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Analytic Continuation and Radius of Convergence

I an analytic continuation into the
complex plane can be performed by
choosing x in CN (x) to be complex,
i.e. x = αeiθ

I rational interpolants can exactly
reproduce polar singularities, thus
extending the ‘radius of convergence’
to the first non-polar singularity, e.g. a
branch point

I even a branch cut may be well
approximated by a series of poles of
the rational fraction

I a rational fraction can have only one
sheet in the complex plane - a
many-sheeted function can only be
reconstructed on a single sheet

BP

[R. de Montessus de Ballore, Bull. Soc. Math. France 30, 28 (1902)]

[P. Masjuan, J.J. Sanz-Cillero, Eur.Phys.J. C73 (2013) 2594]
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Simple Example: f(x) = 1/(x+ 100)

I we use 2 input points for the
SPM

I can we reconstruct the
function?
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Simple Example: f(x) = 1/(x+ 100)

I Only 2 input points are
needed to reconstruct
f(x) = 1

x+100

I it is the “first guess” of the
method
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Another simple example: f(x) = x

I we use 3 input points for the
SPM

I can we reconstruct the
function?
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Another simple example: f(x) = x

I 3 input points are needed to
reconstruct f(x) = x

I with 15 digits precision one
obtains for example

f(x) =
22 + 1.8 · 1015x

1.8 · 1015 − x ≈ x
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Another example: f(x) = ex

I we use 11 input points

I can we reconstruct the
function?
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Another example: f(x) = ex
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I for 11 input points we obtain

f(x) =
263504 + 170536x+ 46451x2 + 10389x3 + 756x4 + 148x5

265568− 98809x+ 15473x2 − 1274x3 + 55x4 − x5
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Another example: f(x) = ex
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I for 11 input points we obtain

CN (x) =
263504 + 170536x+ 46451x2 + 10389x3 + 756x4 + 148x5

265568− 98809x+ 15473x2 − 1274x3 + 55x4 − x5
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What is a spectral function?

ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

Ω

ΡHΩL
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What is a spectral function?
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What is a spectral function?
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What is a spectral function?

ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

Ω

ΡHΩL
Π

Ω = mΠ

2 Γ

Π Ψ Ψ

Ω ³ 2mΨ
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Källén-Lehmann spectral representation

ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

D(p0) =
1

2π

∫ ∞
−∞

2ωρ(ω)

ω2 + p20
dω

The spectral function thus allows access to many
observables, e.g. transport coefficients like the
shear viscosity:

I η =
1

24
lim
ω→0

lim
|~p|→0

1

ω

∫
d4x eipx

〈[
Tij(x), T ij(0)

]〉
[B. Mueller, arXiv: 1309.7616]
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The analytic continuation problem

Calculations at finite temperature are often performed using imaginary energies:

Ω

ip0

Ω

ip0

→
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The analytic continuation problem

Analytic continuation problem: How to get back to real energies?

Ω

ip0

?

?
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Breit-Wigner (BW) propagator

D(p0) =
1

2π

1

(p0 + Γ)2 +M2

ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

=
1

π

2Γω

(ω2 − Γ2 −M2)2 + 4Γ2ω2

D(p0) =
1

2π

∫ ∞
−∞

2ωρ(ω)

ω2 + p2
0

dω

We will use M = 4Γ = 1 GeV and
60 input points for the SPM.
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BW propagator in the complex p0 plane

The poles are perfectly reconstructed with the SPM:

exact: reconstructed:
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BW propagator in the complex p0 plane

For N = 60 input points the reconstructed propagator has 30 poles and 29 zeroes.

Unphysical poles are (nearly) canceled by the zeroes: they have small residues.
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BW propagator in the complex p0 plane

The physical poles can be identified by using a threshold for the residues:

exact:
reconstructed poles:
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BW propagator in the complex p2
0 plane

The branch cut is reconstructed as a series of poles:

exact: reconstructed:
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BW propagator in the complex p2
0 plane

The branch cut is more clearly visible in a histogram, showing the location of the

poles for 100 random subsets of the 60 input points.

exact:
reconstructed poles:
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BW spectral function

The spectral functions is obtained as ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

and fulfills D(p0) = 1
2π

∫∞
−∞

2ωρ(ω)
ω2+p20

dω.

reconstructed spectral function: reconstructed propagator:

25



BW propagator with complex poles

D(p0) =
1

2π

1

(p0 + Γ)2 +M2
+

n∑
j=1

Zj
p2

0 − zj

ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

=
1

π

2Γω

(ω2 − Γ2 −M2)2 + 4Γ2ω2

D(p0) =
1

2π

∫ ∞
−∞

2ωρ(ω)

ω2 + p2
0

dω +
n∑
j=1

Zj
p2

0 − zj

We will use M = 4Γ = 1 GeV, Z1 = Z2 = 1, z1,2 = (−1± i) GeV2.

[D. Binosi and R.-A. T., in preparation]

[Y. Hayashi, K.-I. Kondo, arXiv: 1812.03116]

[F. Siringo, EPJ Web Conf. 137, 13017 (2017)]
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BW with complex poles in the p0 plane

The poles are perfectly reconstructed with the SPM:

exact: reconstructed:
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BW with complex poles in the p2
0 plane

The branch cut is reconstructed as a series of poles:

exact: reconstructed:
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BW with complex poles in the p2
0 plane

Both the branch cut and the poles are visible in the histogram:

exact:
reconstructed poles:
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BW propagator with complex poles

The spectral functions is obtained as ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

and fulfills the generalized spectral representation.

reconstructed spectral function: reconstructed propagator:
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BW propagator with noise

D(p0) =
1

2π

1

(p0 + Γ)2 +M2

ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

=
1

π

2Γω

(ω2 − Γ2 −M2)2 + 4Γ2ω2

D(p2
0) =

1

2π

∫ ∞
−∞

2ωρ(ω)

ω2 + p2
0

dω

We will use M = 4Γ = 1 GeV and add noise: yi → yi(1 + εri) with ε = 10−2 and

ri a random number drawn from a normal distribution with zero mean and unit

standard deviation.
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BW propagator with noise in the p0 plane

The poles are still very well reconstructed with the SPM:

exact: reconstructed:
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BW propagator with noise in the p2
0 plane

The branch cut is reconstructed as a series of poles:

exact: reconstructed:
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BW propagator with noise in the p2
0 plane

The branch cut is reconstructed as a series of poles:

exact:
reconstructed:
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BW propagator with noise

The spectral functions is obtained as ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

and fulfills D(p0) = 1
2π

∫∞
−∞

2ωρ(ω)
ω2+p20

dω.

reconstructed spectral function: reconstructed propagator:
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BW with complex poles and noise

D(p0) =
1

2π

1

(p0 + Γ)2 +M2
+

n∑
j=1

Zj
p2

0 − zj

ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

=
1

π

2Γω

(ω2 − Γ2 −M2)2 + 4Γ2ω2

D(p2
0) =

1

2π

∫ ∞
−∞

2ωρ(ω)

ω2 + p2
0

dω +

n∑
j=1

Zj
p2

0 − zj

We will use M = 4Γ = 1 GeV, Z1 = Z2 = 1, z1,2 = (−1± i) GeV2. and add

noise: yi → yi(1 + εri) with ε = 10−3 and ri a random number drawn from a

normal distribution with zero mean and unit standard deviation.
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BW with complex poles and noise in the p0 plane

Some poles are not found when using a single input data set only:

exact: reconstructed:
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BW with complex poles and noise in the p2
0 plane

The poles are correctly reconstructed:

exact: reconstructed:
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BW with complex poles and noise in the p2
0 plane

The poles and the branch cut are clearly visible in the histogram:

exact:
reconstructed:
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BW with complex poles and noise

The spectral functions is obtained as ρ(ω) = 2 ImD(p0 → −i(ω + i0+))

and fulfills the generalized spectral representation.

reconstructed spectral function: reconstructed propagator:
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Improved SPM algorithm

1. Select N = 50 points randomly from the set of M > N points (xi, yi) for D(p0)

2. Apply the SPM to this subset of points and construct CN (x)

3. Obtain the spectral function as ρ(ω) = 2ImCN (−i(ω + i0+))

4. Identify the relevant complex poles and compute Drec(p0)

5. Calculate the χ2-deviation of the reconstr. propagator, X2 =
∑M
i=1

(Drec(xi)−D(xi))
2

D(xi)

6. repeat 1.-5. L = 5000 times and identify the input point (xj , yj) that appears most
often among the K = 200 best subsets, i.e. those with the smallest X2

7. repeat 1.-6. but always use the points (xj , yj) among the N = 50 points until all
optimal input points have been identified

[D. Binosi and R.-A. T., in preparation]
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BW with complex poles and noise

We apply the improved SPM algorithm to
the BW propagator with complex poles:

[D. Binosi and R.-A. T., in preparation]
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FRG data on the gluon propagator

We will study FRG data on the gluon in Landau gauge SU(3) Yang-Mills theory:

Data set 1: Fit (with noise ε = 10−6) from Cyrol et al., SciPost Phys. 5, 065 (2018)

Data set 2: Same as 1 but with additional complex conjugate poles in p2
0

Data set 3: FRG data from Cyrol et al., Phys. Rev. D 94, 054005 (2016)
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Data set 1

Ĝ
pole
Ans

(p0) =

Nps∑
k=1

N
(k)
pp∏
j=1

 N̂k
(p̂0 + Γ̂k,j)

2 + M̂2
k,j

δk,j , Ĝ
poly
Ans

(p0) =

Npoly∑
j=1

âk

(
p̂
2
0

) j
2

Ĝ
asy
Ans

(p0) = (p̂
2
0)

−1−2α

[
log

(
1 +

p̂20

λ̂2

)]−1−β
, GAns(p0) = KĜpole

Ans
(p0)Ĝ

poly
Ans

(p0)Ĝ
asy
Ans

(p0)

N̂1 α β λ̂

1.33678 -0.428714 -0.777213 1.75049

â1 â2 â3 â4 â5

0.454024 0.241017 3.10257 -1.30804 0.63701

Γ̂1,1 Γ̂1,2 Γ̂1,3 Γ̂1,4 Γ̂1,5 Γ̂1,6

0.100169 0.100141 2.36445 1.5564 1.22013 1.15102

M̂1,1 M̂1,2 M̂1,3 M̂1,4 M̂1,5 M̂1,6

0.849883 0.849902 2.52171 2.44035 3.6016 2.36723

δ1,1 δ1,2 δ1,3 δ1,4 δ1,5 δ1,6

1.61116 1.94095 -2.54586 1.89765 0.168592 0.296215

[A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. 5, 065 (2018)]
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Data set 2

Ĝ
pole
Ans

(p0) =

Nps∑
k=1

N
(k)
pp∏
j=1

 N̂k
(p̂0 + Γ̂k,j)

2 + M̂2
k,j

δk,j , Ĝ
poly
Ans

(p0) =

Npoly∑
j=1

âk

(
p̂
2
0

) j
2

Ĝ
asy
Ans

(p0) = (p̂
2
0)

−1−2α

[
log

(
1 +

p̂20

λ̂2

)]−1−β

GAns(p0) = KĜpole
Ans

(p0)Ĝ
poly
Ans

(p0)Ĝ
asy
Ans

(p0) +
3

p20 − (−0.25 + i)
+

3

p20 − (−0.25− i)

N̂1 α β λ̂

1.33678 -0.428714 -0.777213 1.75049

â1 â2 â3 â4 â5

0.454024 0.241017 3.10257 -1.30804 0.63701

Γ̂1,1 Γ̂1,2 Γ̂1,3 Γ̂1,4 Γ̂1,5 Γ̂1,6

0.100169 0.100141 2.36445 1.5564 1.22013 1.15102

M̂1,1 M̂1,2 M̂1,3 M̂1,4 M̂1,5 M̂1,6

0.849883 0.849902 2.52171 2.44035 3.6016 2.36723

δ1,1 δ1,2 δ1,3 δ1,4 δ1,5 δ1,6

1.61116 1.94095 -2.54586 1.89765 0.168592 0.296215

[A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. 5, 065 (2018)]
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Data set 3

10-2 10-1 100 101

10-3

10-2

Momentum p0 [GeV]

R
el
at
iv
e
er
ro
r

Reconstruction
Input data

Positive sign

Negative sign

10-2 10-1 100 101
0

2

4

6

8

10

Momentum p0 [GeV]

G
lu
on
pr
op
ag
at
or
G
A
[G
eV

-
2 ]

[A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 94, 054005 (2016)]

[A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. 5, 065 (2018)]
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FRG data on the gluon propagator

Data set 1:

exact:

Data set 2:

exact:

Data set 3:

exact:
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FRG data on the gluon propagator

Data set 1, exact:

reconstructed:

Data set 2, exact:

reconstructed:

Data set 3, exact:

reconstructed:
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FRG data on the gluon propagator

Data set 1, exact:

reconstructed:

Data set 2, exact:

reconstructed:

Data set 3, exact:

reconstructed:
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FRG data on the gluon propagator

We apply the improved SPM algorithm to
the data from Cyrol et al., Phys. Rev. D 94,
054005 (2016).

The data show evidence for complex
conjugate poles.

The reconstructed spectral function has the
correct IR and UV behavior:

[D. Binosi and R.-A. T., in preparation]
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FRG data on the gluon propagator

We apply the improved SPM algorithm to
the data from Cyrol et al., Phys. Rev. D 94,
054005 (2016).

The data show evidence for complex
conjugate poles.

[Cyrol et al., Phys. Rev. D 94, 054005 (2016)] [D. Binosi and R.-A. T., in preparation]
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DSE data on the gluon propagator

We apply the improved SPM algorithm to
data from Strauss, Fischer, Kellermann,
PRL 109, 252001 (2012).

The data show evidence for complex
conjugate poles.

[D. Binosi and R.-A. T., in preparation]
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DSE data on the gluon propagator

We apply the improved SPM algorithm to
data from Strauss, Fischer, Kellermann,
PRL 109, 252001 (2012).

The data show evidence for complex
conjugate poles.

[Strauss et al., PRL 109, 252001 (2012)] [D. Binosi and R.-A. T., in preparation] 53



Lattice data on the gluon propagator

We apply the improved SPM algorithm to
data obtained on a 644 lattice with β = 6.0
in SU(3) Yang-Mills theory, Duarte, Oliveira,
Silva, Phys. Rev. D 94, 014502 (2016).

The data show evidence for complex
conjugate poles.

[D. Binosi and R.-A. T., in preparation]

0

0.2

0.4

0.6

0.8

1.0

54



Lattice data on the gluon propagator

We apply the improved SPM algorithm to
data obtained on a 644 lattice with β = 6.0
in SU(3) Yang-Mills theory from Duarte,
Oliveira, Silva, Phys. Rev. D 94, 014502
(2016).

Tikhonov reconstruction:

[Dudal, Oliveira, Roelfs, Silva, arXiv:1901.05348] [D. Binosi and R.-A. T., in preparation]
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DSE data on the ghost propagator

We apply the improved SPM algorithm to
data from Strauss, Fischer, Kellermann,
PRL 109, 252001 (2012).

The ghost propagator only exhibits a branch
cut.

[D. Binosi and R.-A. T., in preparation]
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DSE data on the ghost propagator

We apply the improved SPM algorithm to
data from Strauss, Fischer, Kellermann,
PRL 109, 252001 (2012).

The ghost propagator only exhibits a branch
cut.

[D. Binosi and R.-A. T., in preparation]

[Strauss et al., PRL 109, 252001 (2012)] [D. Binosi and R.-A. T., in preparation]
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Lattice data on the ghost propagator

We apply the improved SPM algorithm to
data obtained on a 644 lattice with β = 6.0
in SU(3) Yang-Mills theory, Duarte, Oliveira,
Silva, Phys. Rev. D 94, 014502 (2016).

The ghost propagator only exhibits a branch
cut.

[D. Binosi and R.-A. T., in preparation]
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Lattice data on the ghost propagator

We apply the improved SPM algorithm to
data obtained on a 644 lattice with β = 6.0
in SU(3) Yang-Mills theory, Duarte, Oliveira,
Silva, Phys. Rev. D 94, 014502 (2016).

The ghost propagator only exhibits a branch
cut.

Tikhonov reconstruction:

[Dudal, Oliveira, Roelfs, Silva, arXiv:1901.05348] [D. Binosi and R.-A. T., in preparation]
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Summary

We applied the Schlessinger point method (SPM) to FRG, DSE and lattice
data on the Landau gauge SU(3) Yang-Mills gluon and ghost propagator in
order to determine their analytic structure in the complex q2 plane and to
reconstruct the corresponding spectral functions:

I the gluon and ghost propagators show a branch cut at q2 ≤ 0

I in addition, we find evidence for complex conjugate poles in the gluon
propagator
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