## Spectral functions

via

# numerical analytic continuation 

Ralf-Arno Tripolt

EMMI Workshop - Functional Methods in Strongly Correlated Systems
Hirschegg, Kleinwalsertal, Austria, March 31 - April 6, 2019

## Outline

## Schlessinger Point Method (SPM)

- definition and simple examples


## Analytic continuation of Euclidean data

- test case: spectral function and analytic structure of the Breit-Wigner propagator
- FRG, DSE and lattice data: spectral function and analytic structure of the gluon and ghost propagator


## Summary and outlook

## Schlessinger Point Method (SPM)

Given a finite set of $N$ data points $\left(x_{i}, f_{i}\right)$ we construct the rational interpolant $p(x) / q(x)$ with polynomials $p(x)$ and $q(x)$ that is given by the continued fraction

$$
p(x) / q(x)=C_{N}(x)=\frac{f_{1}}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{a_{2}\left(x-x_{2}\right)}{\vdots a_{N-1}\left(x-x_{N-1}\right)}}},
$$

where the coefficients $a_{i}$ are given recursively by $a_{1}=\frac{f_{1} / f_{2}-1}{x_{2}-x_{1}}$ and

$$
a_{i}=\frac{1}{x_{i}-x_{i+1}}\left(1+\frac{a_{i-1}\left(x_{i+1}-x_{i-1}\right)}{1+} \frac{a_{i-2}\left(x_{i+1}-x_{i-2}\right)}{1+} \cdots \frac{a_{1}\left(x_{i+1}-x_{1}\right)}{1-f_{1} / f_{i+1}}\right)
$$

The polynomials $(p(x), q(x))$ are of order $(N / 2-1, N / 2)$ for an even number of input points and $((N-1) / 2,(N-1) / 2)$ for an odd number of input points
[L. Schlessinger, Physical Review, Volume 167, Number 5 (1968)]
[R.W. Haymaker and L. Schlesinger, Mathematics in Science and Engineering, Volume 71, Chapter 11 (1970)]
[H.J. Vidberg and J.W. Serene, Journal of Low Temperature Physics, Vol. 29, Nos. 3/4 (1977)]
[R.-A. T., I. Haritan, J. Wambach, N. Moiseyev, Physics Letters B 774 (2017) 411-416]
[R.-A. T., P. Gubler, M. Ulybyshev, L. v. Smekal, Comput.Phys.Commun. 237 (2019) 129-142]

## Analytic Continuation and Radius of Convergence

- an analytic continuation into the complex plane can be performed by choosing $x$ in $C_{N}(x)$ to be complex, i.e. $x=\alpha e^{i \theta}$
- rational interpolants can exactly reproduce polar singularities, thus extending the 'radius of convergence' to the first non-polar singularity, e.g. a branch point
- even a branch cut may be well approximated by a series of poles of the rational fraction
- a rational fraction can have only one
 sheet in the complex plane - a many-sheeted function can only be reconstructed on a single sheet


## Simple Example: $f(x)=1 /(x+100)$



## Simple Example: $f(x)=1 /(x+100)$

- Only 2 input points are needed to reconstruct
$f(x)=\frac{1}{x+100}$
- it is the "first guess" of the method



## Another simple example: $f(x)=x$



## Another simple example: $f(x)=x$

- 3 input points are needed to reconstruct $f(x)=x$
- with 15 digits precision one obtains for example

$$
f(x)=\frac{22+1.8 \cdot 10^{15} x}{1.8 \cdot 10^{15}-x} \approx x
$$



## Another example: $f(x)=e^{x}$



## Another example: $f(x)=e^{x}$



- for 11 input points we obtain

$$
f(x)=\frac{263504+170536 x+46451 x^{2}+10389 x^{3}+756 x^{4}+148 x^{5}}{265568-98809 x+15473 x^{2}-1274 x^{3}+55 x^{4}-x^{5}}
$$

## Another example: $f(x)=e^{x}$



- for 11 input points we obtain

$$
C_{N}(x)=\frac{263504+170536 x+46451 x^{2}+10389 x^{3}+756 x^{4}+148 x^{5}}{265568-98809 x+15473 x^{2}-1274 x^{3}+55 x^{4}-x^{5}}
$$

## What is a spectral function?

$$
\rho(\omega)=2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right)
$$

$\rho(\omega)$

$\omega$

## What is a spectral function?

$$
\rho(\omega)=2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right)
$$

$\rho(\omega)$

$\pi$
$\omega=m_{\pi}$

## What is a spectral function?

$$
\rho(\omega)=2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right)
$$



## What is a spectral function?

$$
\rho(\omega)=2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right)
$$



## Källén-Lehmann spectral representation

$$
\begin{aligned}
\rho(\omega) & =2 \operatorname{lm} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right) \\
D\left(p_{0}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \omega \rho(\omega)}{\omega^{2}+p_{0}^{2}} d \omega
\end{aligned}
$$

The spectral function thus allows access to many observables, e.g. transport coefficients like the shear viscosity:

- $\eta=\frac{1}{24} \lim _{\omega \rightarrow 0} \lim _{|\vec{p}| \rightarrow 0} \frac{1}{\omega} \int d^{4} x e^{i p x}\left\langle\left[T_{i j}(x), T^{i j}(0)\right]\right\rangle$

[B. Mueller, arXiv: 1309.7616]


## The analytic continuation problem

Calculations at finite temperature are often performed using imaginary energies:


## The analytic continuation problem

Analytic continuation problem: How to get back to real energies?


## Breit-Wigner (BW) propagator

$$
D\left(p_{0}\right)=\frac{1}{2 \pi} \frac{1}{\left(p_{0}+\Gamma\right)^{2}+M^{2}}
$$

$$
\begin{aligned}
\rho(\omega) & =2 \operatorname{lm} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right) \\
& =\frac{1}{\pi} \frac{2 \Gamma \omega}{\left(\omega^{2}-\Gamma^{2}-M^{2}\right)^{2}+4 \Gamma^{2} \omega^{2}}
\end{aligned}
$$

$$
D\left(p_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \omega \rho(\omega)}{\omega^{2}+p_{0}^{2}} d \omega
$$



We will use $M=4 \Gamma=1 \mathrm{GeV}$ and 60 input points for the SPM.

## BW propagator in the complex $p_{0}$ plane

The poles are perfectly reconstructed with the SPM:
exact:

reconstructed:


## BW propagator in the complex $p_{0}$ plane

For $N=60$ input points the reconstructed propagator has 30 poles and 29 zeroes. Unphysical poles are (nearly) canceled by the zeroes: they have small residues.



## BW propagator in the complex $p_{0}$ plane

The physical poles can be identified by using a threshold for the residues:
exact:

reconstructed poles:


## BW propagator in the complex $p_{0}^{2}$ plane

The branch cut is reconstructed as a series of poles:
exact:

reconstructed:


## BW propagator in the complex $p_{0}^{2}$ plane

The branch cut is more clearly visible in a histogram, showing the location of the poles for 100 random subsets of the 60 input points.
exact:
reconstructed poles:


## BW spectral function

The spectral functions is obtained as $\rho(\omega)=2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right)$ and fulfills $D\left(p_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \omega \rho(\omega)}{\omega^{2}+p_{0}^{2}} d \omega$.
reconstructed spectral function:

reconstructed propagator:


## BW propagator with complex poles

$$
\begin{aligned}
& \begin{aligned}
D\left(p_{0}\right) & =\frac{1}{2 \pi} \frac{1}{\left(p_{0}+\Gamma\right)^{2}+M^{2}}+\sum_{j=1}^{n} \frac{Z_{j}}{p_{0}^{2}-z_{j}} \\
\rho(\omega) & =2 \operatorname{lm} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right) \\
& =\frac{1}{\pi} \frac{2 \Gamma \omega}{\left(\omega^{2}-\Gamma^{2}-M^{2}\right)^{2}+4 \Gamma^{2} \omega^{2}} \\
D\left(p_{0}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \omega \rho(\omega)}{\omega^{2}+p_{0}^{2}} d \omega+\sum_{j=1}^{n} \frac{Z_{j}}{p_{0}^{2}-z_{j}}
\end{aligned}
\end{aligned}
$$



We will use $M=4 \Gamma=1 \mathrm{GeV}, Z_{1}=Z_{2}=1, z_{1,2}=(-1 \pm i) \mathrm{GeV}^{2}$.
[D. Binosi and R.-A. T., in preparation]
[Y. Hayashi, K.-I. Kondo, arXiv: 1812.03116]
[F. Siringo, EPJ Web Conf. 137, 13017 (2017)]

## BW with complex poles in the $p_{0}$ plane

The poles are perfectly reconstructed with the SPM:
exact:

reconstructed:


## BW with complex poles in the $p_{0}^{2}$ plane

The branch cut is reconstructed as a series of poles:
exact:

reconstructed:


## BW with complex poles in the $p_{0}^{2}$ plane

Both the branch cut and the poles are visible in the histogram:
exact:

reconstructed poles:


## BW propagator with complex poles

The spectral functions is obtained as $\rho(\omega)=2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right)$ and fulfills the generalized spectral representation.
reconstructed spectral function:

reconstructed propagator:


## BW propagator with noise

$$
\begin{aligned}
& \begin{aligned}
D\left(p_{0}\right) & =\frac{1}{2 \pi} \frac{1}{\left(p_{0}+\Gamma\right)^{2}+M^{2}} \\
& =\frac{1}{\pi} \frac{2 \Gamma \omega}{\left(\omega^{2}-\Gamma^{2}-M^{2}\right)^{2}+4 \Gamma^{2} \omega^{2}} \\
& =2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right) \\
D\left(p_{0}^{2}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \omega \rho(\omega)}{\omega^{2}+p_{0}^{2}} d \omega
\end{aligned}
\end{aligned}
$$



We will use $M=4 \Gamma=1 \mathrm{GeV}$ and add noise: $y_{i} \rightarrow y_{i}\left(1+\varepsilon r_{i}\right)$ with $\varepsilon=10^{-2}$ and $r_{i}$ a random number drawn from a normal distribution with zero mean and unit standard deviation.

## BW propagator with noise in the $p_{0}$ plane

The poles are still very well reconstructed with the SPM:
exact:

reconstructed:


## BW propagator with noise in the $p_{0}^{2}$ plane

The branch cut is reconstructed as a series of poles:
exact:

reconstructed:


## BW propagator with noise in the $p_{0}^{2}$ plane

The branch cut is reconstructed as a series of poles:
exact:

reconstructed:


## BW propagator with noise

The spectral functions is obtained as $\rho(\omega)=2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right)$ and fulfills $D\left(p_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \omega \rho(\omega)}{\omega^{2}+p_{0}^{2}} d \omega$.
reconstructed spectral function:

reconstructed propagator:


## BW with complex poles and noise

$$
\begin{aligned}
& \begin{aligned}
& D\left(p_{0}\right)=\frac{1}{2 \pi} \frac{1}{\left(p_{0}+\Gamma\right)^{2}+M^{2}}+\sum_{j=1}^{n} \frac{Z_{j}}{p_{0}^{2}-z_{j}} \\
& \begin{aligned}
\rho(\omega) & =2 \operatorname{lm} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right) \\
& =\frac{1}{\pi} \frac{2 \Gamma \omega}{\left(\omega^{2}-\Gamma^{2}-M^{2}\right)^{2}+4 \Gamma^{2} \omega^{2}} \\
D\left(p_{0}^{2}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2 \omega \rho(\omega)}{\omega^{2}+p_{0}^{2}} d \omega+\sum_{j=1}^{n} \frac{Z_{j}}{p_{0}^{2}-z_{j}}
\end{aligned}
\end{aligned} .
\end{aligned}
$$



We will use $M=4 \Gamma=1 \mathrm{GeV}, Z_{1}=Z_{2}=1, z_{1,2}=(-1 \pm i) \mathrm{GeV}^{2}$. and add noise: $y_{i} \rightarrow y_{i}\left(1+\varepsilon r_{i}\right)$ with $\varepsilon=10^{-3}$ and $r_{i}$ a random number drawn from a normal distribution with zero mean and unit standard deviation.

## BW with complex poles and noise in the $p_{0}$ plane

Some poles are not found when using a single input data set only:
exact:

reconstructed:


## BW with complex poles and noise in the $p_{0}^{2}$ plane

The poles are correctly reconstructed:
exact:

reconstructed:


## BW with complex poles and noise in the $p_{0}^{2}$ plane

The poles and the branch cut are clearly visible in the histogram:
exact:

reconstructed:


## BW with complex poles and noise

The spectral functions is obtained as $\rho(\omega)=2 \operatorname{Im} D\left(p_{0} \rightarrow-i\left(\omega+i 0^{+}\right)\right)$ and fulfills the generalized spectral representation.
reconstructed spectral function:

reconstructed propagator:


## Improved SPM algorithm

1. Select $N=50$ points randomly from the set of $M>N$ points $\left(x_{i}, y_{i}\right)$ for $D\left(p_{0}\right)$
2. Apply the SPM to this subset of points and construct $C_{N}(x)$
3. Obtain the spectral function as $\rho(\omega)=2 \operatorname{Im} C_{N}\left(-i\left(\omega+i 0^{+}\right)\right)$
4. Identify the relevant complex poles and compute $D_{\text {rec }}\left(p_{0}\right)$
5. Calculate the $\chi^{2}$-deviation of the reconstr. propagator, $X^{2}=\sum_{i=1}^{M} \frac{\left(D_{\mathrm{rec}}\left(x_{i}\right)-D\left(x_{i}\right)\right)^{2}}{D\left(x_{i}\right)}$
6. repeat 1.-5. $L=5000$ times and identify the input point $\left(x_{j}, y_{j}\right)$ that appears most often among the $K=200$ best subsets, i.e. those with the smallest $X^{2}$
7. repeat 1.-6. but always use the points $\left(x_{j}, y_{j}\right)$ among the $N=50$ points until all optimal input points have been identified
[D. Binosi and R.-A. T., in preparation]

## BW with complex poles and noise

We apply the improved SPM algorithm to the BW propagator with complex poles:
[D. Binosi and R.-A. T., in preparation]



## FRG data on the gluon propagator

We will study FRG data on the gluon in Landau gauge SU(3) Yang-Mills theory:

Data set 1: Fit (with noise $\epsilon=10^{-6}$ ) from Cyrol et al., SciPost Phys. 5, 065 (2018)

Data set 2: Same as 1 but with additional complex conjugate poles in $p_{0}^{2}$

Data set 3: FRG data from Cyrol et al., Phys. Rev. D 94, 054005 (2016)




## Data set 1

$$
\begin{aligned}
& \hat{G}_{\text {Ans }}^{\text {pole }}\left(p_{0}\right)=\sum_{k=1}^{N_{\mathrm{ps}}} \prod_{j=1}^{N_{\mathrm{pp}}^{(k)}}\left(\frac{\hat{\mathcal{N}}_{k}}{\left(\hat{p}_{0}+\hat{\Gamma}_{k, j}\right)^{2}+\hat{M}_{k, j}^{2}}\right)^{\delta_{k, j}}, \quad \hat{G}_{\text {Ans }}^{\mathrm{poly}}\left(p_{0}\right)=\sum_{j=1}^{N_{\text {poly }}} \hat{a}_{k}\left(\hat{p}_{0}^{2}\right)^{\frac{j}{2}} \\
& \hat{G}_{\text {Ans }}^{\text {asy }}\left(p_{0}\right)=\left(\hat{p}_{0}^{2}\right)^{-1-2 \alpha}\left[\log \left(1+\frac{\hat{p}_{0}^{2}}{\hat{\lambda}^{2}}\right)\right]^{-1-\beta}, \quad G_{\text {Ans }}\left(p_{0}\right)=\mathcal{K} \hat{G}_{\text {Ans }}^{\text {pole }}\left(p_{0}\right) \hat{G}_{\text {Ans }}^{\text {poly }}\left(p_{0}\right) \hat{G}_{\text {Ans }}^{\text {asy }}\left(p_{0}\right)
\end{aligned}
$$

| $\hat{\mathcal{N}}_{1}$ | $\alpha$ | $\beta$ | $\hat{\lambda}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.33678 | -0.428714 | -0.777213 | 1.75049 |  |  |
| $\hat{a}_{1}$ | $\hat{a}_{2}$ | $\hat{a}_{3}$ | $\hat{a}_{4}$ | $\hat{a}_{5}$ |  |
| 0.454024 | 0.241017 | 3.10257 | -1.30804 | 0.63701 |  |
| $\hat{\Gamma}_{1,1}$ | $\hat{\Gamma}_{1,2}$ | $\hat{\Gamma}_{1,3}$ | $\hat{\Gamma}_{1,4}$ | $\hat{\Gamma}_{1,5}$ | $\hat{\Gamma}_{1,6}$ |
| 0.100169 | 0.100141 | 2.36445 | 1.5564 | 1.22013 | 1.15102 |
| $\hat{M}_{1,1}$ | $\hat{M}_{1,2}$ | $\hat{M}_{1,3}$ | $\hat{M}_{1,4}$ | $\hat{M}_{1,5}$ | $\hat{M}_{1,6}$ |
| 0.849883 | 0.849902 | 2.52171 | 2.44035 | 3.6016 | 2.36723 |
| $\delta_{1,1}$ | $\delta_{1,2}$ | $\delta_{1,3}$ | $\delta_{1,4}$ | $\delta_{1,5}$ | $\delta_{1,6}$ |
| 1.61116 | 1.94095 | -2.54586 | 1.89765 | 0.168592 | 0.296215 |

[A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. 5, 065 (2018)]

## Data set 2

$$
\begin{aligned}
& \hat{G}_{\text {Ans }}^{\text {pole }}\left(p_{0}\right)=\sum_{k=1}^{N_{\mathrm{ps}}} \prod_{j=1}^{N_{\mathrm{pp}}^{(k)}}\left(\frac{\hat{\mathcal{N}}_{k}}{\left(\hat{p}_{0}+\hat{\Gamma}_{k, j}\right)^{2}+\hat{M}_{k, j}^{2}}\right)^{\delta_{k, j}}, \quad \hat{G}_{\text {Ans }}^{\text {poly }}\left(p_{0}\right)=\sum_{j=1}^{N_{\text {poly }}} \hat{a}_{k}\left(\hat{p}_{0}^{2}\right)^{\frac{j}{2}} \\
& \hat{G}_{\text {Ans }}^{\text {asy }}\left(p_{0}\right)=\left(\hat{p}_{0}^{2}\right)^{-1-2 \alpha}\left[\log \left(1+\frac{\hat{p}_{0}^{2}}{\hat{\lambda}^{2}}\right)\right]^{-1-\beta} \\
& G_{\text {Ans }}\left(p_{0}\right)=\mathcal{K} \hat{G}_{\text {Ans }}^{\text {pole }}\left(p_{0}\right) \hat{G}_{\text {Ans }}^{\text {poly }}\left(p_{0}\right) \hat{G}_{\text {Ans }}^{\text {asy }}\left(p_{0}\right)+\frac{3}{p_{0}^{2}-(-0.25+i)}+\frac{3}{p_{0}^{2}-(-0.25-i)}
\end{aligned}
$$

| $\hat{\mathcal{N}}_{1}$ | $\alpha$ | $\beta$ | $\hat{\lambda}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.33678 | -0.428714 | -0.777213 | 1.75049 |  |  |
| $\hat{a}_{1}$ | $\hat{a}_{2}$ | $\hat{a}_{3}$ | $\hat{a}_{4}$ | $\hat{a}_{5}$ |  |
| 0.454024 | 0.241017 | 3.10257 | -1.30804 | 0.63701 |  |
| $\hat{\Gamma}_{1,1}$ | $\hat{\Gamma}_{1,2}$ | $\hat{\Gamma}_{1,3}$ | $\hat{\Gamma}_{1,4}$ | $\hat{\Gamma}_{1,5}$ | $\hat{\Gamma}_{1,6}$ |
| 0.100169 | 0.100141 | 2.36445 | 1.5564 | 1.22013 | 1.15102 |
| $\hat{M}_{1,1}$ | $\hat{M}_{1,2}$ | $\hat{M}_{1,3}$ | $\hat{M}_{1,4}$ | $\hat{M}_{1,5}$ | $\hat{M}_{1,6}$ |
| 0.849883 | 0.849902 | 2.52171 | 2.44035 | 3.6016 | 2.36723 |
| $\delta_{1,1}$ | $\delta_{1,2}$ | $\delta_{1,3}$ | $\delta_{1,4}$ | $\delta_{1,5}$ | $\delta_{1,6}$ |
| 1.61116 | 1.94095 | -2.54586 | 1.89765 | 0.168592 | 0.296215 |

[A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. 5, 065 (2018)]

## Data set 3


[A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 94, 054005 (2016)]
[A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. 5, 065 (2018)]

## FRG data on the gluon propagator

Data set 1 :

exact:
(

Data set 2:

exact:


Data set 3:

exact:

## FRG data on the gluon propagator

Data set 1, exact:

reconstructed:
$\operatorname{Im}\left(\mathrm{D}\left(p_{0}^{2}\right)\right)\left[\mathrm{GeV}^{-2}\right]$


Data set 2, exact:

reconstructed:


Data set 3, exact:
reconstructed:


## FRG data on the gluon propagator

Data set 1, exact:

reconstructed:


Data set 2, exact:

reconstructed:


Data set 3, exact:
reconstructed:


## FRG data on the gluon propagator

We apply the improved SPM algorithm to the data from Cyrol et al., Phys. Rev. D 94, 054005 (2016).

The data show evidence for complex conjugate poles.

The reconstructed spectral function has the correct IR and UV behavior:


[D. Binosi and R.-A. T., in preparation]



## FRG data on the gluon propagator

We apply the improved SPM algorithm to the data from Cyrol et al., Phys. Rev. D 94, 054005 (2016).

The data show evidence for complex conjugate poles.


[Cyrol et al., Phys. Rev. D 94, 054005 (2016)]

## DSE data on the gluon propagator

We apply the improved SPM algorithm to data from Strauss, Fischer, Kellermann, PRL 109, 252001 (2012).

The data show evidence for complex conjugate poles.
[D. Binosi and R.-A. T., in preparation]



## DSE data on the gluon propagator

We apply the improved SPM algorithm to data from Strauss, Fischer, Kellermann, PRL 109, 252001 (2012).

The data show evidence for complex conjugate poles.



[D. Binosi and R.-A. T., in preparation]

## Lattice data on the gluon propagator

We apply the improved SPM algorithm to data obtained on a $64^{4}$ lattice with $\beta=6.0$ in SU(3) Yang-Mills theory, Duarte, Oliveira, Silva, Phys. Rev. D 94, 014502 (2016).

The data show evidence for complex conjugate poles.
[D. Binosi and R.-A. T., in preparation]



## Lattice data on the gluon propagator

We apply the improved SPM algorithm to data obtained on a $64^{4}$ lattice with $\beta=6.0$ in SU(3) Yang-Mills theory from Duarte, Oliveira, Silva, Phys. Rev. D 94, 014502 (2016).


[Dudal, Oliveira, Roelfs, Silva, arXiv:1901.05348]

## DSE data on the ghost propagator

We apply the improved SPM algorithm to data from Strauss, Fischer, Kellermann, PRL 109, 252001 (2012).

The ghost propagator only exhibits a branch cut.
[D. Binosi and R.-A. T., in preparation]




## DSE data on the ghost propagator

We apply the improved SPM algorithm to data from Strauss, Fischer, Kellermann, PRL 109, 252001 (2012).

The ghost propagator only exhibits a branch cut.
[D. Binosi and R.-A. T., in preparation]



## Lattice data on the ghost propagator

We apply the improved SPM algorithm to data obtained on a $64^{4}$ lattice with $\beta=6.0$ in SU(3) Yang-Mills theory, Duarte, Oliveira, Silva, Phys. Rev. D 94, 014502 (2016).

The ghost propagator only exhibits a branch cut.
[D. Binosi and R.-A. T., in preparation]



## Lattice data on the ghost propagator

We apply the improved SPM algorithm to data obtained on a $64^{4}$ lattice with $\beta=6.0$ in SU(3) Yang-Mills theory, Duarte, Oliveira, Silva, Phys. Rev. D 94, 014502 (2016).

The ghost propagator only exhibits a branch cut.

Tikhonov reconstruction:

[Dudal, Oliveira, Roelfs, Silva, arXiv:1901.05348]

[D. Binosi and R.-A. T., in preparation]

## Summary

We applied the Schlessinger point method (SPM) to FRG, DSE and lattice data on the Landau gauge $\operatorname{SU}(3)$ Yang-Mills gluon and ghost propagator in order to determine their analytic structure in the complex $q^{2}$ plane and to reconstruct the corresponding spectral functions:

- the gluon and ghost propagators show a branch cut at $q^{2} \leq 0$
- in addition, we find evidence for complex conjugate poles in the gluon propagator

