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Need for Transport

Many repeated elementary
interactions outside equilibrium

• Central Nuclear Collisions
• Isotope Production
• Energetic Hadron-Nucleus

Collision
• ν Detection
• Supernova Explosion
• Technological Applications
• . . .
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Degrees of Freedom
Choice depends on energy and application

• Nucleons
• Clusters
• Pions, Baryon Resonances
• Kaons, Strange Baryons
• Photons
• . . .
Dominant degrees of freedom must be included; other might be
treated perturbatively

Phase-space distribution (in configuration space and
momentum)⇔Wigner function

f (p; R,T ) =

∫
dr e−ipr 〈ψ̂†H(R− r/2,T ) ψ̂H(R+r/2,T )〉
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Statistical Description
Phase-space distribution

f (p; R,T ) =

∫
dr e−ipr 〈ψ̂†H(R− r/2,T ) ψ̂H(R+r/2,T )〉

Dynamics: Particles move through noisy medium: stochastic +
deterministic impact of the medium on the particle - collisions +
mean field
Descriptions invoke Boltzmann equation:

∂f
∂t

+
∂ε

∂ppp
∂f
∂rrr
− ∂ε

∂rrr
∂f
∂ppp

= K< (1∓ f )−K> f

Left-hand deterministic impact Right-hand stochastic
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Means of Learning on EOS at ρ > ρ0

E
A

(ρn, ρp) =
E0

A
(ρ) + S(ρ)

(ρn − ρp

ρ

)2
+O(. . .4)

symmetric matter (a)symmetry energy ρ = ρn + ρp

E0

A
(ρ) = −B +

K
18

(ρ− ρ0

ρ0

)2
+ . . . S(ρ) = S0 +

L
3
ρ− ρ0

ρ0
+ . . .

Known: B ≈ 16 MeV K ∼ 235 MeV Unknown: S0 ? L ?
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• Boltzmann Equation Type
– Examples: GIBUU, IBUU, pBUU, RVUU
– Pros: Well-defined equation, derivable from

microscopic theory, solved; easy Pauli principle &
mean-field

– Cons: No fluctuations
• Molecular Dynamics
• Examples: IQMD, CoMD, TuQMD, UrQMD
• Pros: Good fluctuations late in reactions
• Cons: Wrong fluctuations initially, troubles with Pauli &

mean-field, too much phenomenology?
• Antisymmetrized Molecular Dynamics (AMD)

– Pros: Excellent initial states, good mean field & Pauli
– Cons: Troubles with final states, dose of

phenomenology
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EOS and Flow Anisotropies
EOS assessed through reaction plane anisotropies
characterizing particle collective motion

Hydro? Euler eq. in ~v = 0 frame: mN ρ
∂
∂t ~v = −~∇p

where p - pressure. From features of v , knowing ∆t , we may
learn about p in relation to ρ. ∆t fixed by spectator motion

For high p, expansion
rapid and much
affected by spectators

For low p, expansion
sluggish and
completes after
spectators gone
Simulation by Shi (pBUU)
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2nd-Order or Elliptic Flow
Anisotropy studied at midrapidity:
v2 = 〈cos 2φ〉, where φ is azimuthal angle
relative to reaction plane

Au+Au v2
Excitation Function
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Subthreshold Meson (K/π) Production
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soft EOS, IQMD, pot RMF  
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soft EOS, IQMD, Giessen cs
hard EOS, IQMD, Giessen cs 

Ratio of kaons per
participant nucleon
in Au+Au collisions to
kaons in C+C collisions
vs beam energy

filled diamonds: KaoS
data
open symbols: theory
Fuchs et al

Kaon yield sensitive to EOS because multiple interactions
needed for production, testing density
The data suggest a relatively soft EOS
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Constraints from Flow on EOS
Au+Au flow anisotropies:
ρ ' (2− 4.6)ρ0.
No one EOS yields both
flows right. Discrepancies:
inaccuracy of theory
Most extreme models for
EOS can be eliminated
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Neutron Matter:
Uncertainty in
symmetry energy
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Charged π Probing High-ρ Symmetry Energy
B-A Li PRL88(02)192701: S(ρ > ρ0)⇒ n/pρ>ρ0 ⇒ π−/π+
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Dedicated Experimental Efforts
SAMURAI-TPC Collaboration (data taken; 8 countries and 43
researchers): comparisons of near-threshold π− and π+ and
also n-p spectra and flows at RIKEN, Japan.

NSCL/MSU, Texas A&M U
Western Michigan U, U of Notre Dame
GSI, Daresbury Lab, INFN/LNS
U of Budapest, SUBATECH, GANIL
China IAE, Brazil, RIKEN, Rikkyo U
Tohoku U, Kyoto U

LAMPS TPC at RAON (S Korea): triple GEM, 3π sr
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FOPI Au+Au π−/π+ Data?
Reisdorf et al. (FOPI) NPA781(07)459

data: black symbols

theory: colored
symbols

Opposing sensitivity to S(ρ) claimed in transport
& used to explain data!
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FOPI π−/π+ Reproduced by pBUU
. . . irrespectively of Sint(ρ) = S0 (ρ/ρ0)γ :

Jun Hong & PD PRC90(14)024605
. . . Other probes possible, but general problem of model
ambiguity remains!
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Chronology
• Motivation: Discrepancies Impediment to Conclusions
• Workshops at ECT* Trento in 2004 & 2009

– Jorg Aichelin, Christopher Hartnack,
Evgeni Kolomeitsev

– similar physics, naive full-run comparisons

• Second Phase ≥ 2014
– Isospin physics, δ = (ρn − ρp)/ρ ∼ 0.2 needs more

precision/consistency
– Betty Tsang, Jun Xu, Yingxun Zhang, Akira Ono,

Maria Colonna
– similar/identical physics, naive restart
– breaking problem into pieces: initial state, collisions,

Pauli pcple, detailed balance, mean field. . .

• Impact on Everyday Practices
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Papers & Participants

– E. E. Kolomeitsev et al., J. Phys. G 31 (2005) S741
– Jun Xu et al. (31 authors), Phys. Rev. C 93 (2016) 044609
– Yingxun Zhang et al. (30 authors), Phys. Rev. C 97 (2018)

034625
– . . .

Transport Comparison Danielewicz



Introduction Successes & Failures Comparison Project Impacts: TuQMD Example Conclusions

Premise

– Specify the same physics inputs for different transport
codes

– Compare outputs

– Full-run comparisons
* elastic collisions only
* constant isotropic cross section σ = 40 mb
* soft EOS + momentum-independent mean-field
* Next: π & K production

– Controlled simplified conditions
* isolated nucleus
* collisions in a box← approach to equilibrium
* mean field in a box
* Next: ∆ + π production in a box. . .
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Stability of Initial Density in Dynamics
Boltzmann Molecular Dynamics

Jun Xu et al. PRC93(16)044609 Isolated Au nucleus
⇒ Initial state must be constructed consistently with dynamics
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Density Evolutions for Molecular Dynamics
100 MeV/nucleon Au + Au at b = 7 fm

General characteristics the same but differences in details
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From Differences in Dynamics to Observables
Au + Au at b = 7 fm: In-Plane Momentum vs y

100MeV/nucl 100MeV/nucl

400MeV/nucl 400MeV/nucl

Less dispersion at high than low energy. But who is right??
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Periodic Box Comparions
Selecting individual ingredients, testing against independently
established limits, e.g.

1. Elastic Collisions Only
2. Mean-Field Only
3. Delta Production & Absorption. . .
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Collisions w/Pauli: Stability of Fermi-Dirac
Systems initialized with Fermi-Dirac at ρ0 and T = 5 MeV
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Box: Collision Frequency

0.0

0.5

1.0

0.0

0.5

1.0

1.90 1.95 2.00
0.0

0.5

1.90 1.95 2.00
0.0

0.5

CBOP1T5
 

 

d
N

s
u
c

c
o
ll
/d

s
1
/2
 (

G
e
V

-1
)  BUU-VM

 GiBUU

 IBUU

 pBUU

 RVUU

 SMASH

 SMF  

 

 CoMD

 ImQMD

 IQMD-BNU

 IQMD-IMP

 JAM

 JQMD

 TuQMD

 UrQMD

BUU

P
b
lo

c
k

s
1/2

 (GeV)

  Ref. line

CBOP1T5

QMD

s
1/2 

(GeV)

collision rate
vs
√

s

blocking
fraction

dashed line
– reference

Far too many collisions allowed at low excitations (T = 5 MeV)!
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Box: Occupation Probabilities in Blocking Factors
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Detailed Balance Tests

∆ & π production in a box

Rate of N + N → N + ∆ per time & energy (blue)
Rate of N + ∆→ N + N per time & energy (red)

Lower panels: scaled difference

Detailed balance satisfied if rates per time & energy identical
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Mean-Field Testing
Mean-field only; collisions off
Starting density ρ(rrr , t = 0) = ρ0 + aρ sin (kz)
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Mean-Field Testing - Fourier Decomposition

ρn(t) =
∫

dx sin kz ρ(rrr , t) k = 2πn/L

Starting density ρ(rrr , t = 0) = ρ0 + aρ sin (kz)

Large amplitude, hence coupling between modes
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Way Forward

Different codes perform differently in different tests
Some do well

After each sweep procedures are identified that lead to
satisfactory performance and are recommended for all codes,
e.g. initialization

In consequence of the code comparisons, the codes are rebuilt

E.g. TuQMD
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Example: Rebuilt TuQMD
Dan Cozma EPJA54(18)23
Rebuilt density initializations and Pauli principle
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FOPI-LAND & ASYEOS Elliptic-Flow Data
Data Cozma PRC88(13)044912
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Constraints on Symmetry Energy Parameters

Dan Cozma EPJA54(18)23
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Conclusions

• Transport theory is indispensible in many situations
• ⇒ It is means to learn on nuclear properties at

supranormal densities
• It has been used to extract constraints on nuclear pressure

at supranormal densities from flow data!
• The ability to learn from finer details in data, such as on

symmetry energy, calls for stringent quality control of the
theory
• The community effort produces quality standards, helps to

sort out the best procedures and prune out mistakes
• This helps to elevate the level of validity of conclusions

reached using transport, e.g. TuQMD

Thanks to the authors participating in the code comparisons!!
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