

Strange Production from Elementary to Heavy Ion Collisions in the GeV Range^{*}

Steffen Maurus, Laura Fabbietti and Joana Wirth for the HADES Collaboration

Dense and Strange Hadronic Matter (E62) Physik Department Technische Universität München

*supported by SFB 1258

Collision System Zoo

→ Subthreshold strangeness production?

Juniversal Strangeness Production

- → All strange hadrons produced below NN threshold:
 - $\rightarrow NN \rightarrow N\Lambda K (\approx -150 \text{ MeV})$
 - $\rightarrow NN \rightarrow NK\bar{K}/NN\phi$ (\approx 450 MeV)

\rightarrow Universal scaling with A_{part}

Λ

Collision System Zoo

 $\sum NN + \pi N$? \rightarrow Subthreshold strangeness production?

Associated K⁰ Production

 $p \xrightarrow{\pi^+} X^{K^0}$

Agakishiev et al. Phys. Rev. C90, 015202 (2014)

Reference measurement of K_s^0 for the interpretation of p+A data (e.g. KN interaction)

$\overline{K^0}$ reactions	$\sigma_{ m anisotropic}~(\mu b)$
$\overline{p+p \to \Sigma^+ + p + K^0}$	$26.27 \pm 0.64^{+2.57}_{-2.13} \pm 1.84$
$p + p \rightarrow \Lambda + p + \pi^+ + K^0$	$2.57 \pm 0.02^{+0.21}_{-1.98} \pm 0.18$
$p + p ightarrow \Sigma^0 + p + \pi^+ + K^0$	$1.35\pm0.02^{+0.10}_{-1.35}\pm0.09$
$p + p \rightarrow \Lambda + \Delta^{++} + K^0$	$29.45 \pm 0.08^{+1.67}_{-1.46} \pm 2.06$
$p + p \rightarrow \Sigma^0 + \Delta^{++} + K^0$	$9.26 \pm 0.05^{+1.41}_{-0.31} \pm 0.65$
$p + p \rightarrow \Sigma(1385)^+ + p + K^0$	$14.35 \pm 0.05^{+1.79}_{-2.14} \pm 1.00$

К⁰

Λ

N* Excitation Function (pKA)

How many N^* do exist? Interference? Interference: coherent sum of different amplitudes contributing to final state.

Bonn-Gatchina PWA Framework

Sarantsev et. al., Eur. Phys. J. A 35 (2007)

ightarrow Cross-section decomposition: $d\sigma \propto |A|^2$

 \rightarrow Partial wave composition **A**: sum of transition amplitudes A_{tr}^{α}

$$\rightarrow A_{tr}^{\alpha} = (a_1^{\alpha} + a_3^{\alpha}\sqrt{s})e^{ia_2^{\alpha}}$$

→ $N^*(1650), N^*(1710), N^*(1720), N^*(1875), N^*(1880), N^*(1895), N^*(1900)$ → Interferences + non-resonant pKA production

Steffen Maurus

N* Excitation Function (pKA)

σ(μ b)

→ Non-resonant contribution to total contribution varies from 40-10% with increasing E_{kin}

Steffen Maurus

N* Excitation Function

K⁰

Σ

Collision System Zoo

 πN $\pi N \rightarrow N^* \rightarrow YK$ $\pi N \rightarrow N^* \rightarrow NK\overline{K}$ $\pi N \rightarrow N^* \rightarrow \phi N$ $\rightarrow \text{Resonance interplay: interference}$

Strangeness exchange: $\bar{K}N \rightarrow \pi Y$ (mediated by resonances)

Feed-down processes: $\phi \rightarrow K \overline{K}$

NN

→ Resonance interplay interference

NA

Absorption processes: $\phi N \rightarrow \pi N$ (OZI violation)

Re-scattering with Nucleons: $KN, \overline{K}N, YN, ..$

 $\sum NN + \pi N$? → Subthreshold strangeness production?

Collision System Zoo

 $\sum NN + \pi N$? → Subthreshold strangeness production?

Interplay of Antikaons with Nucleons

Cabrera et al. Phys.Rev. C 90, 055207 (2014)

Special Resonance: Λ(1405)

Agakishiev et al., Phys. Rev. C 87, 025201 (2013) Agakishiev et al., Nucl. Phys. A 881, 178 (2012)

Λ(1405)

Kamiya, ..., Weise, Nucl. Phys. A 954, 41 (2016)

\$×0

Special Resonance: Λ(1405)

Strangeness Exchange

→ At least 40% of K^- get absorbed for $\rho \le \rho_0$ → First observation in heavy nuclei

rix CIN

K⁻

Collision System Zoo

Strange Meson: **\$\$**

Blume et al., Prog. Part. Nucl. Phys. 66, 834-879 (2011)

Hartmann et al., Phys. Rev. Lett. 96, 242301 (2006) Balestra et al. Phys. Rev. C 63, 024004 (2001) Landolt-Börnstein

K

φ

Absorption Processes: ϕ

K⁻

φ

K⁺

 \rightarrow First model-independent observation of ϕ absorption

K*CIN

EMMI Workshop 2019

Phi Transparency Ratio

Within HADES acceptance (without p_T/y extrapolation)

HADES Collaboration, arXiv:1812.03728

Wood et al. Phys. Rev. Lett. 105, 112301 (2010) $(12/208) (\sigma_{\phi}^{Pb}/\sigma_{\phi}^{C}) = 0.46 \pm (0.12)^{stat} \pm (0.13)^{sys}$ $\begin{pmatrix} 1 \\ 0.8 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.4 \\ 0.7 \\ 0.8 \\ 0.4 \\ 0.7 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.7 \\ 0.8 \\ 0.6 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.$

- → Extracted transparency ratio lower in π^- + A reactions compared to proton- (ANKE) and photo-induced (CLAS) reactions
- \rightarrow Signature of φ absorption

Φ

ϕ d-Down

Antikaon from Phi feed-down:

→ ϕ important source for K⁻ production below NN threshold

Blume et al. Prog. Part. Nucl. Phys. 66, 834-879 (2011) Adamczewski-Musch et al. Phys. Lett. B 778, 403 (2018)

- $\rightarrow \varphi$ contribution to (final) K^- yield around 25%
- → Feed-down from φ can account for different slopes observed for K⁻ and K⁺
- → Role of absorption? Production mechanism?

AUTAN

Collision System Zoo

→ Subthreshold strangeness production?

Kaon-Hyperon Coupling

Σ0

(Anti)Kaon in Medium

Kaon-Nucleon Interaction

 K_{s}^{0} properties: Ar + KCl, p + Nb (p + p) Agakishiev et al. Phys. Rev. C82, 044907 (2010) Agakishiev et al. Phys. Rev. C90, 054906 (2014) Benabderrahmane et al. Phys. Rev. Lett. 102, 182501 (2009)

System (energy)	Experiment	Potential [MeV]
$\pi + A (1.02 \ GeV)$	FOPI	20 ± 5
p + A (2.3 <i>GeV</i>)	ANKE	20 <u>+</u> 5
Ar + KCl (1.76 <i>GeV</i>)	HADES	39
p + Nb (3.5 <i>GeV</i>)	HADES	40

K⁻

K⁰

K+

Hyperons inside Nuclear Matter

 $\rightarrow \Lambda/\Sigma$ single particle interaction within the nucleus?

EMMI Workshop 2019

Hyperon Propagation in Matter

Σ0

Transport Model: **GiBUU**

Steffen Maurus

Kx W

Σ0

Transport Model: **GiBUU**

1. No $K^0/\Lambda/\Sigma^0 N$ potentials (ES(Y,K))

ix W

Σ0

- Transport Model: GiBUU
- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))

→ Simultaneous fit of all kinematic observables: $K^0(p_T, y, p, \Theta)$ and $\Lambda(p_T, y, p, \Theta)$

XX

Σ0

Transport Model: GiBUU

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))

KN potential

Agakishiev et al., Phys. Rev. C 90, 054906 (2014)

(xN)

Σ0

Transport Model: GiBUU

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))

KN potential

Agakishiev et al., Phys. Rev. C 90, 054906 (2014)

ix N

Σ0

Transport Model: GiBUU

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No $\Lambda/\Sigma^0 N$ potentials (ES(Y))
- **3.** Attractive $\Lambda / \Sigma^0 N$ potentials (STD)

1×W

Σ0

Transport Model: GiBUU

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No $\Lambda/\Sigma^0 N$ potentials (ES(Y))
- **3.** Attractive $\Lambda / \Sigma^0 N$ potentials (STD)

1×1×1

Σ0

Transport Model: GiBUU(Loniki)

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No $\Lambda/\Sigma^0 N$ potentials (ES(Y))
- **3.** Attractive $\Lambda/\Sigma^0 N$ potentials (STD)
- 4. Attractive ΛN , repulsive $\Sigma^0 N$ (RS)

Steffen Maurus

Nx's

EMMI Workshop 2019

Transport Model: GiBUU(Loniki)

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No $\Lambda/\Sigma^0 N$ potentials (ES(Y))
- **3.** Attractive $\Lambda/\Sigma^0 N$ potentials (STD)
- 4. Attractive ΛN , repulsive $\Sigma^0 N$ (RS)

Steffen Maurus

Nx's

EMMI Workshop 2019

- → Data agrees best with **attractive** ΛN and **attractive** $\Sigma^0 N$ potentials (@ ρ_0)
- \rightarrow Also favored for lighter target (C)
- → Possibility of testing single particle potentials with χ EFT

Transport Model: GiBUU(Loniki)

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))
- **3.** Attractive $\Lambda/\Sigma^0 N$ potentials (STD)
- 4. Attractive ΛN , repulsive $\Sigma^0 N$ (RS)

based on χ EFT by Haidenbauer et al., Eur. Phys. J. A 52, 15 (2016)

N_x,

<u>5</u>0

Effects of Kaon Potentials

HSD v711n: Phys. Rep. 308, 65–233 (1999) IQMD c8: Eur. Phys. J. A 1, 151–169 (1998) UrQMD 3.4: Prog. Part. Nucl. Phys. 41, 255–369 (1998)

AUTAN

<u>5</u>0

Summary

 Λ^0

500

200 400

0

600 800

p, [MeV/c]

300 ⟨A

Backup

Steffen Maurus

In HADES acceptance

TX XN

Θ

Σ0

In HADES acceptance

Σ0

K⁰

p [MeV/c]

80

T.XN

Θ

In HADES acceptance

1×C

Σ0

In HADES acceptance

In HADES acceptance

t.xC

Σ0

Inclusive Diff. Cross-Sections

r'x CIN

K⁻

K⁰

K+

Phi – Omega Mixing

 $\rightarrow R_{\Phi/\omega}$ clearly exceeds native application of OZI rule

Ar+KCl: Agakishiev et al. Phys. Rev. C 85, 014902 (2011)

EMMI Workshop 2019

ω

φ