KAON - and **HYPERON** - **NUCLEAR INTERACTIONS** from **CHIRAL SU**(3) **EFFECTIVE FIELD THEORY**

Kaon and antikaon interactions with nucleons and nuclei

- Chiral SU(3) coupled-channels dynamics and the $oldsymbol{\Lambda}(1405)$
- Constraints from kaonic hydrogen and K^-p scattering
- ${f N}$ ${f K}^+{f N}$ interaction update

Hyperon-nucleon interactions from chiral SU(3) EFT

- Hyperon-nuclear potential and hyperon-NN three-body forces
- Strangeness in cold & dense baryonic matter ? "Hyperon puzzle" in neutron stars

Part I.

Antíkaon and Kaon Interactions with Nucleons and Nuclei

Historical Reminder:

Kaons and Antikaons in Nuclear Matter

In-medium Chiral SU(3) Dynamics with Coupled Channels Kaon spectrum in baryonic matter determined by: $\omega^2 - \vec{q}^2 - m_K^2 - \Pi_K(\omega, \vec{q}; \rho) = 0$ Pauli blocking, $\Pi_{K^{-}} = 2\omega U_{K^{-}} = -4\pi \left[f_{K^{-}p} \rho_{p} + f_{K^{-}n} \rho_{n} \right] + \dots +$ Fermi motion, **2N correlations** Symmetric Nuclear Matter 1.5V. Koch $\mathbf{m}^*_{\mathbf{K}}(\rho)$ Phys. Lett. B 337 (1994) 7 K⁺mass mк M. Lutz T. Waas, N. Kaiser, W.W.: 1.0Phys. Lett. B 426 (1998) 12 Phys. Lett. B 379 (1996) 34 K⁻ mass A. Ramos, E. Oset T.Waas,W.W.: Nucl. Phys. A 671 (2000) 481 0.5Nucl. Phys. A 625 (1997) 287 M. Lutz, C.L. Korpa, M. Möller K⁻ width / 100 MeV Nucl. Phys. A 808 (2008) 124 0 23 0 1 ρ/ρ_0

• Kaon condensation in dense baryonic matter?

... first suggested by D. Kaplan, A. Nelson (1985), but: ruled out by neutron star constraints

Spontaneously Broken $\label{eq:chiral} \mbox{CHIRAL} \ \mathbf{SU}(3)_{\mathbf{L}} \times \mathbf{SU}(3)_{\mathbf{R}} \ \mbox{SYMMETRY}$

NAMBU - GOLDSTONE BOSONS:

Pseudoscalar SU(3) meson octet

$$\{\phi_a\} = \{\pi, \mathbf{K}, \, \bar{\mathbf{K}}, \eta_8\}$$

DECAY CONSTANTS:

Chiral limit: $f=86.2~{\rm MeV}$

Order parameter : $4\pi\,f\sim 1\,\,GeV$

$$\label{eq:f_m} \begin{split} \mathbf{f}_{\pi} &= \mathbf{92.3} \pm \mathbf{0.1} \ \mathbf{MeV} \\ \mathbf{f_K} &= \mathbf{110.8} \pm \mathbf{0.3} \ \mathbf{MeV} \end{split}$$

Gell-Mann, Oakes, Renner relations

$$\begin{split} m_\pi^2\,f_\pi^2 &= -\frac{m_u+m_d}{2} \langle \bar{u}u+\bar{d}d\rangle \\ m_K^2\,f_K^2 &= -\frac{m_u+m_s}{2} \langle \bar{u}u+\bar{s}s\rangle \\ \end{split}$$

Spontaneously Broken CHIRAL SYMMETRY

GOLDSTONE's **Theorem**:

Massless Nambu-Goldstone bosons do not interact in the limit of zero momentum (long-wavelength limit)

S-wave interactions of NG bosons

CHIRAL SU(3) EFFECTIVE FIELD THEORY

ordered hierarchy of driving interactions

Solution LO $\overline{K}N$ (S = -1) and $\overline{K}N$ (S = +1) threshold (s wave) amplitudes :

$$\begin{split} \mathbf{T}(\mathbf{K}^+\mathbf{p})_{\mathbf{thr}} &= \mathbf{2}\,\mathbf{T}(\mathbf{K}^+\mathbf{n})_{\mathbf{thr}} = -\frac{\mathbf{m}_{\mathbf{K}}}{\mathbf{f}^2} & \text{repulsive} & | & \text{Potentials:} \\ \mathbf{T}(\mathbf{K}^-\mathbf{p})_{\mathbf{thr}} &= \mathbf{2}\,\mathbf{T}(\mathbf{K}^-\mathbf{n})_{\mathbf{thr}} = \frac{\mathbf{m}_{\mathbf{K}}}{\mathbf{f}^2} & \text{attractive} & | & \mathbf{V}(\mathbf{r}) = -\frac{\mathbf{T}}{2E}\,\delta^3(\mathbf{r}) \\ \end{split}$$

next-to-leading order (NLO) $O(p^2)$ input: several low-energy constants

Chiral ${\bf SU}(3)_{{\bf L}}\times {\bf SU}(3)_{{\bf R}}$ Effective Field Theory

Starting point: Meson-Baryon Lagrangian (chiral limit)

$$\mathcal{L}_{\rm MB} = \operatorname{tr}\left(\bar{B}\left(i\gamma^{\mu}D_{\mu} - M_{0}\right)B\right) - \frac{D}{2}\operatorname{tr}\left(\bar{B}\gamma^{\mu}\gamma_{5}\{u_{\mu}, B\}\right) - \frac{F}{2}\operatorname{tr}\left(\bar{B}\gamma^{\mu}\gamma_{5}[u_{\mu}, B]\right)$$
$$B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p\\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n\\ -\Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix} \qquad P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+}\\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0}\\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$

Chiral covariant derivative: $D_{\mu}B = \partial_{\mu}B + [\Gamma_{\mu}, B]$ $\Gamma_{\mu} = \frac{1}{2}(u^{\dagger}\partial_{\mu}u + u\partial_{\mu}u^{\dagger})$ $u_{\mu} = i(u^{\dagger}\partial_{\mu}u - u\partial_{\mu}u^{\dagger})$

Chiral (pseudoscalar Nambu-Goldstone boson) field :

 $U(x) = u^{2}(x) = \exp\left(i\frac{\sqrt{2}P(x)}{f}\right) \text{ transforms as } \begin{array}{c} U \to R U L^{\dagger} \\ R \in SU(3)_{R} \quad L \in SU(3)_{L} \end{array}$

• Input: F = 0.46 D = 0.81 $(g_A = F + D = 1.27)$ $f = 0.09 \, GeV$

Physical meson and baryon masses [SU(3) breaking]

CHIRAL SU(3) EFFECTIVE FIELD THEORY COUPLED CHANNELS DYNAMICS:

NLO hierarchy of driving terms

$$\mathcal{L}_{WT} = \frac{1}{2} \operatorname{Tr}(\bar{B}\gamma^{\mu}\Gamma_{\mu}B)$$

leading order (Tomozawa-Weinberg) terms **input**: physical pion and kaon decay constants

direct and crossed **Born terms** input: axial vector constants D and F from hyperon beta decays $g_A = D + F = 1.27$

 $\mathcal{O}(p^2)$

Technische Universität Münche

next-to-leading order (NLO) input: several low-energy constants

$$\mathcal{L}_{2}^{MB} = b_{D} \operatorname{Tr} \left(\bar{B} \{ \chi_{+}, B \} \right) + b_{F} \operatorname{Tr} \left(\bar{B} [\chi_{+}, B] \right) + b_{0} \operatorname{Tr} \left(\bar{B} B \right) \operatorname{Tr} (\chi_{+})$$

+ $d_{1} \operatorname{Tr} \left(\bar{B} \{ u^{\mu}, [u_{\mu}, B] \} \right) + d_{2} \operatorname{Tr} \left(\bar{B} [u^{\mu}, [u_{\mu}, B]] \right)$
+ $d_{3} \operatorname{Tr} \left(\bar{B} u_{\mu} \right) \operatorname{Tr} \left(u^{\mu} B \right) + d_{4} \operatorname{Tr} \left(\bar{B} B \right) \operatorname{Tr} \left(u^{\mu} u_{\mu} \right),$

Low-Energy $\overline{\mathbf{K}}\mathbf{N}$ Interactions

- Framework: Chiral SU(3) Effective Field Theory ... but :
- Chiral Perturbation Theory NOT applicable: $\Lambda(1405)$ resonance 27 MeV below $\mathbf{K}^-\mathbf{p}$ threshold N. Kaiser, P. Siegel, W.W. (1995) E. Oset, A. Ramos (1998)

Non-perturbative Coupled Channels approach based on Chiral SU(3) Dynamics

Leading s-wave I = 0 meson-baryon interactions (Weinberg-Tomozawa)

ΚN

 Λ (1405) $\mathbf{u}, \mathbf{d} \mathbf{S}$

1500

 \sqrt{s} [MeV]

 $\Sigma_{11}(1385)$

 $\Lambda\pi \Sigma\pi$

Review: T. Hyodo, D. Jido Prog. Part. Nucl. Phys. 67 (2012) 55

channel coupling

Scattering length constraints from SIDDHARTA kaonic hydrogen measurements

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

Y. Ikeda, T. Hyodo, W.W.: Nucl. Phys. A 881 (2012) 98

 $P_{\rm lab}~[{\rm MeV}/c]$

 P_{lab} [MeV/c]

 P_{lab} [MeV/c]

Construction of a local $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential and composition of the $\Lambda(1405)$

Kenta Miyahara,^{1,*} Tetsuo Hyodo,² and Wolfram Weise³

¹Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

²Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

³Physik-Department, Technische Universität München, 85748 Garching, Germany

... reproduce T-matrix when solving coupled-channels Schrödinger equation

Technische Universität Müncher

KN scattering amplitude revisited in a chiral unitary approach and a possible broad resonance in S = +1 channel

Kenji Aoki^{1,2,*} and Daisuke Jido^{2,1}

¹Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan ²Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Megro, Tokyo 152-8551, Japan

Chiral SU(3) NLO calculations of ${f K}^+ p$ and ${f K}^+ n$ scattering

Broad resonances in I = 0 KN

Table 3. The resonance states of Solutions 1 and 2.			
amplitude (J^P)	mass [MeV]	width [MeV]	
Solution 1 $P_{01}\left(\frac{1}{2}^+\right)$	1617	305	
Solution 2 $P_{03}\left(\frac{3}{2}^+\right)$	1678	463	

 ${f K}^+ p$ differential cross sections

Part II. Hyperon-Nuclear Interactions and Strangeness in Dense Matter

- Chiral SU(3) Effective Field Theory of Hyperon-Nucleon Interactions
- Two- and Three-Body Forces
- "Hyperon Puzzle" in Neutron Stars

NEUTRON STAR MATTER including **HYPERONS**

Quantum Monte Carlo calculations using phenomenological hyperon-nucleon and hyperon-NN three-body interactions constrained by hypernuclei

Inclusion of hyperons: EoS too soft to support 2-solar-mass n-stars unless: strong repulsion in YN and YNN ... interactions

BARYON-BARYON INTERACTIONS from **CHIRAL SU**(3) **EFFECTIVE FIELD THEORY**

- **NN interaction :** has reached N⁴LO level
- YN interaction : so far very limited empirical data base
 restriction to NLO plus YNN three-body forces

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W.: Nucl. Phys. A 915 (2013) 24

Hyperon - Nucleon Interactions from Lattice QCD

Coupled-Channels Lippmann-Schwinger Equation

Partial waves (LS)J , baryon-baryon channels lpha,eta

$$\begin{aligned} \mathbf{T}_{\beta\alpha}^{J}(p_{f},p_{i};\sqrt{s}) &= \mathbf{V}_{\beta\alpha}^{J}(p_{f},p_{i}) + \\ &\sum_{\gamma} \int_{0}^{\infty} \frac{dp \, p^{2}}{(2\pi)^{3}} \mathbf{V}_{\beta\gamma}^{J}(p_{f},p) \frac{2\mu_{\gamma}}{p_{\gamma}^{2} - p^{2} + i\varepsilon} \mathbf{T}_{\gamma\alpha}^{J}(p,p_{i};\sqrt{s}) \end{aligned}$$

- On-shell momentum of intermediate channel γ determined by : $\sqrt{s} = \sqrt{M_{\gamma,1}^2 + p_{\gamma}^2} + \sqrt{M_{\gamma,2}^2 + p_{\gamma}^2}$
- Relativistic kinematics relating lab. and c.m. momenta
- Momentum space cutoffs: 0.5 0.6 GeV

Hyperon - Nucleon Interaction from Chiral SU(3) EFT

Technische Universität Müncher

Hyperon - Nucleon Interaction (contd.)

Triplet-S channel and $\operatorname{\Lambda}\mathrm{N}\leftrightarrow \Sigma\operatorname{N}$ coupling (2nd order tensor force)

In-medium (Pauli) suppression of Λ N \leftrightarrow Σ N coupling : increasing repulsion with rising density

Hyperon - Nucleon Interaction (contd.)

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W. Nucl. Phys. A 915 (2013) 24

$\Sigma \Sigma N$ elastic and charge exchange scattering

Quest for much improved hyperon-nucleon scattering data base !

HYPERON - NUCLEON - NUCLEON THREE-BODY FORCES from CHIRAL SU(3) EFT

S. Petschauer et al. Phys. Rev. C93 (2016) 014001

Chiral SU(3) Effective Field Theory:

interacting pseudoscalar meson & baryon octets + contact terms

Chiral SU(3) Effective Field Theory with **explicit decuplet baryons**:

explicit treatment of **baryon decuplet** :

promotion to NLO

10

[8]

8

ryon to	rce incli	
— 1		necessary vertices:
Ihrec		18 low-energy constants
	I hree-ba	Three-baryon forces
		 construction of chiral Lagrangian in non-relativistic limit with minimal number of terms for full SU(3) sector [Petschauer, Kaiser, Haidenbauer, Meißner, Weise, PRC93 (2016)]
Ľ	LO	 necessary vertices: <u>18 Ww-energy constants</u> a baryon propagator. All types of diagrams arising this way are shown in Fig. 3. We restrict ourselves to the contact term and to the contributions from one- and two-pare expected to be dominant. Hence, the converting viconstants equal meson masses. In further contributions arise that involve the exchange of at least one heavier meson (kao
NI	NLO	densities these contributions of much shorter range can effectively be absorbed into a short-range part of the three-baryon force. When evaluating diagrams the medium $-2\pi\delta(k_0)\theta(k_f - \vec{k})$. An additional minus sign comes from a closed fermion loop. Equivient interaction can be constructed from the expressions for the three-baryon potentials in $1000000000000000000000000000000000000$
N ²	N ² LO	where $\operatorname{tr}_{\sigma_3}$ denotes the spin the (index and index and the sum coes over all baryon species B . The full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by $[8]_{NN \to \Lambda NN}$ is the full period by the period by the full period by the
promot	tion from N	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	ryon fo Threc L NI N2	ryon force inclusion Three-based on the second on the sec

... towards a possible solution of the "hyperon puzzle"?

Density dependence of Λ single particle potential (contd.)

Chiral NN (N3LO) + YN (NLO) interactions + NNN & YNN 3-body forces

Coupled-channels G-matrix including explicit $\Lambda \mathrm{NN} \leftrightarrow \Sigma \mathrm{NN}$ three-body interactions

$$\mathbf{G}_{\alpha\beta}(\omega;\rho) = \mathbf{V}_{\alpha\beta}(\rho) + \mathbf{V}_{\alpha\gamma}(\rho) \frac{\mathbf{Q}}{\mathbf{e}(\omega) + \mathbf{i}\epsilon} \mathbf{G}_{\gamma\beta}(\omega;\rho)$$

D. Gerstung, N. Kaiser, W.W. (2018-19)

Hyperons in Neutron Stars ?

Onset condition for appearance of Λ hyperons in neutron stars :

- Extrapolations using Λ single particle potential in neutron (star) matter from Chiral SU(3) EFT interactions
 - Further calculations in progress

(D. Gerstung, N. Kaiser, W.W. 2018)

SUMMARY

Low-energy kaon and antikaon interactions with nucleons and nuclei

- Chiral SU(3) EFT + coupled channels dynamics
- Construction of equivalent local and E-dependent potentials
- $\sim {
 m K}^-$ -nuclear clusters : weak binding, large widths

Progress in constructing hyperon-nuclear interactions

- Chiral SU(3) EFT + coupled channels dynamics
- YN two-body interactions at NLO
- Importance of $\Lambda\,{
 m N}\leftrightarrow\Sigma\,{
 m N}$ (2nd order pion exchange tensor force)
- **YNN three-body forces** (incl. $\Lambda NN \leftrightarrow \Sigma NN$ coupled channels)

Single particle potential of a $\,\Lambda\,$ in nuclear and neutron matter

- Moderately attractive at low density (hypernuclei)
- Strongly repulsive at high density (2+3 body interactions)
 ... possible solution of "hyperon puzzle" in neutron stars
 - "Conventional" neutron star matter seems to work (no first-order chiral phase transition in sight)

Chiral ${\bf SU}(3)_{{\bf L}}\times {\bf SU}(3)_{{\bf R}}$ Effective Field Theory

Interaction Lagrangian: expand in powers of meson fields P(x)

$$\mathcal{L}_{int} = \mathcal{L}_{1} + \mathcal{L}_{2} + \dots + \text{mass terms}$$

$$\mathcal{L}_{1} = -\frac{\sqrt{2}}{2f} \operatorname{tr} \left(D\bar{B}\gamma^{\mu}\gamma_{5}\{\partial_{\mu}P, B\} + F\bar{B}\gamma^{\mu}\gamma_{5}[\partial_{\mu}^{[8]}P, B] \right)^{[8]} \overset{[8]}{=} \overset{[8]$$

Input: F = 0.46 D = 0.81 $(g_A = F + D = 1.27)$ $f = 0.09 \, GeV$

Physical meson and baryon masses (SU(3) breaking)

