

Hyperon-nucleon and hyperon-hyperon interaction studied via two-particles correlations

Laura Fabbietti

Technische Universität München

- Hadron interactions
- The measurement of Hadron Hadron Correlations
- Experimental Results: RUN1 and RUN2

 - pp, p Λ , p Ξ^- , pK(\overline{K}) Correlations
- Outlook

Hadron Interactions

Scattering experiments -> Extraction of the differential cross section

Partial Wave Expansion:

$$\sigma = \frac{4\pi}{k^2} \sum_{l} (2l+1) \sin^2(\delta_l). \qquad \qquad \delta_l = \text{phase shifts}$$

Scattering Length

$$f_0 = -\lim_{k \to 0} \frac{1}{k} \tan \delta_0(k)$$
 l=0, s-wave Only!

Which information does the scattering length carry?

5

Hyperon-Nucleon Scattering

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.Haidenbauer., N.Kaiser, et al., NPA 915 (2013) 24

Data from scattering experiments and bubble chambers detectors from 1968 and 1971 $K^- + p \rightarrow \Sigma^0 + \pi^0, \Sigma^0 \rightarrow \Lambda + \gamma$ $K^- + p \rightarrow \Sigma^- + \pi^+...$ Production Threshold for $\Lambda's: p \ge 100 MeV$

Hyperon-Nucleon Scattering

Data from scattering experiments and bubble chambers detectors from 1968 and 1971 $K^- + p \rightarrow \Sigma^0 + \pi^0, \Sigma^0 \rightarrow \Lambda + \gamma$ $K^- + p \rightarrow \Sigma^- + \pi^+ \dots$ Production Threshold for $\Lambda's: p \ge 100 MeV$

Single Particle Potential

Two particle interactions are fundamental to extract the behaviours of hyperons within nuclear matter

Haidenbauer et a. Eur.Phys.J. A53 (2017) no.6, 121

The measurement of Hadron Hadron Correlations

Particle Propagation

The ALICE Data Set

We measure **pp**, **pΛ**, **ΛΛ**, **pΞ**, **pK**

Proton and Pion identification with TPC and TOF

Reconstruction of hyperons

$$\Lambda \rightarrow p\pi^-$$
 (BR ~ 64%)

$$\Xi \rightarrow \Lambda \pi^-$$
 (BR ~ 100%)

Datasets:

- pp 7 TeV: 3.4 10⁸ MB Events
- pp 5 TeV: 10 · 10⁸ MB Events
- pp 13 TeV: 10 · 10⁸ MB Events
- p-Pb 5.02 TeV: 6.0 · 10⁸ MB Events

The correlation function:

$$C(k^*) = \frac{P(\boldsymbol{p}_a, \boldsymbol{p}_b)}{P(\boldsymbol{p}_a)P(\boldsymbol{p}_b)},$$

The correlation function:

$$C(k^*) = \frac{P(\boldsymbol{p}_a, \boldsymbol{p}_b)}{P(\boldsymbol{p}_a)P(\boldsymbol{p}_b)},$$

Experimentally obtained as:

$$C(k^*) = \mathcal{N} \frac{N_{Same}(k^*)}{N_{Mixed}(k^*)}$$

The correlation function:

The correlation function:

Assumption of a common source with Gaussian shape for the pp, p Λ , p Ξ , $\Lambda\Lambda$ and pK Correlation Function

The correlation function:

19

ПП

(D.L.Mihaylov et al. Eur.Phys.J. C78 (2018) no.5,394)

The correlation function:

CATS – Correlation Analysis Tool Using the Schrödinger Equation

(D.L.Mihaylov et al. Eur.Phys.J. C78 (2018) no.5,394)

$$C(k) = \int S(\vec{r},k) |\psi(\vec{r},k)|^2 d\vec{r} \xrightarrow{k \to \infty} 1$$

Experimental Results: RUN1 and RUN2

Fit of the pp, Λp and $\Lambda\Lambda$ Correlation Function

pp 7 TeV RUN1 ~ 2,5 * 10⁸ evt ALICE Coll. arXiv:1805.12455

pp

Interplay between the strong attractive and Coulomb repulsive interactions

Fit to the experimental with CATS

AV18 Potential

Gaussian Source

Common to ALL pairs (same procedure for p-Pb data as well)

$$C(k) = \int dr^3 \phi_{rel}^2(r,k) \exp\left(-\frac{r^2}{4R_G^2}\right)$$

Fit of the pp, Λp and $\Lambda\Lambda$ Correlation Function

pp 7 TeV RUN1 ~ 2,5 * 10⁸ evt ALICE Coll. arXiv:1805.12455

Lednicky fits with scattering parameters CATS for NLO also possible Evident attractive interaction

Fit of the pp, Λp and $\Lambda \Lambda$ Correlation Function

pp 7 TeV RUN1 ~ 2,5 * 10⁸ evt ALICE Coll. arXiv:1805.12455 accepted by PRC

pp(* V 3.5) C(k*) C(k*) ALICE pp $\sqrt{s} = 7$ TeV ALICE pp **s** = 7 TeV ALICE pp $\sqrt{s} = 7 \text{ TeV}$ $r_0 = 1.144 \pm 0.019 + 0.019_{-0.012}^{+0.069}$ fm $r_0 = 1.144 \pm 0.019 + 0.019 + 0.019$ fm $r_0 = 1.144 \pm 0.019 + 0.019_{-0.012}^{+0.069}$ fm 2.5 1.8 $\oint p\Lambda \oplus \overline{p}\overline{\Lambda}$ pairs $\Lambda \Lambda \oplus \overline{\Lambda \Lambda}$ pairs $pp \oplus \overline{pp}$ pairs Syst. uncertainties Syst. uncertainties Syst. uncertainties 2.5 1.6 Femtoscopic fit (NLO params.) Femtoscopic fit Femtoscopic fit Femtoscopic fit (LO params.) Femtoscopic fit (STAR params.) 1.4 Nucl. Phys. A915 (2013) 24. PRL C02 (2015) 022301 1.5 1.5 1.2 0.5 0.5 0.8 0.06 0.05 0.02 0.04 0.08 0.1 0.12 0.05 0.1 0.15 0.2 0.1 0.15 0.2 0 k* (GeV/c) k* (GeV/c) k* (GeV/c)

 Λp

Different baseline because of quantum statistics

Lednicky fit carried out too large error yet on the scattering parameters ΛΛ

Proton-A : Scattering vs Femtoscopy Data

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.Haidenbauer., N.Kaiser, et al., NPA 915 (2013) 24

26

- * Extension to the low momentum regime
- * Statistics not sufficient to test different models

RUN2 data: 10⁹ evt for pp and 5* 10⁸ evt for p-Pb

- * Extension to the low momentum regime
- * Statistics sufficient to test different models

Under the assumption of a common Gaussian source smaller scattering lengths are favoured LO less attractive than NLO

 $-1.91\,fm$

LO less attractive than
$$a^1S_0 = -2.91 fm$$
 $a^1S_0 =$

Fit of the pp, Λp and $\Lambda \Lambda$ Correlation Function Π

Gaussian source and Argonne v₁₈ potential describes the p-p correlation function

- Source size of the pp (7 TeV) system r₀=1.14 fm (ALICE Coll. arXiv:1805.12455)
- Source size of the pp (13 TeV) system $r_0=1.19$ fm
- Source size of the p-Pb (5.02 TeV) system $r_0=1.44$ fm

 Taking the strong interaction into account creates a significantly different Correlation function than Coulomb only

CATS (D.L.Mihaylov et al. Eur.Phys.J. C78 (2018) no.5,394)

30

Lattice Interaction

(Potential from Hatsuda et al., NPA967 (2017) 856, PoS Lattice2016 (2017) 116)

Errors due to different integration times

Each Potential can be converted in a correlation function via CATS

$$C(k^*) = \frac{1}{8} \left(C_{I=0}^{S=0} + C_{I=1}^{S=0} \right) + \frac{3}{8} \left(C_{I=0}^{S=1} + C_{I=1}^{S=1} \right)$$

proton- Ξ^- Correlation Function

First observation of strong attractive interaction in p-\Xi^-

proton- Ξ^- Correlation Function

First observation of strong attractive interaction in p-\Xi^-

modeled with preliminary QCD strong potential by the HAL QCD collaboration

(Hatsuda et al., NPA967 (2017) 856, PoS Lattice2016 (2017) 116)

$$C(k^*) = \frac{1}{8} \left(C_{I=0}^{S=0} + C_{I=1}^{S=0} \right) + \frac{3}{8} \left(C_{I=0}^{S=1} + C_{I=1}^{S=1} \right)$$

Coulomb-only hypothesis excluded at around 4 σ

Kp and Kp correlations

Kp and Kp correlations

G.S. Abrams et al. Phys.Rev. 139 (1965) B454-B457

Clear effect of the opening of the $\bar{K}^0 N$ channel $\bar{K}^0 N \to K^- p$

Unprecedented constrains for low energy QCD

1)

2),

3)

5

2

ł.

E

3

4

5

0

4)

Finalise RUN2 Analysis (2018 data)

-> Detailed study of Λp

-> Preliminary results for $\underline{p}\Sigma$ and $p\Omega$

-> Ongoing analysis of dK(K)

-> Extraction of cross-sections and comparison to theoretical predictions

-> Work on three particle correlations

In RUN3 (from 2021 on) we expect factor 100 in statistics

FEMTO GANG

