Towards production of Silicon Tracking Systems for the CBM and BM@N experiments

- I. CBM-STS, progress with its components
- II. BM@N-STS, system definition
- III. CBM-STS timeline, links to BM@N planning

Johann M. Heuser, GSI Darmstadt for the CBM Collaboration

Dense Baryonic Matter

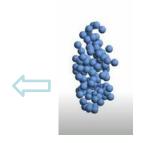
Neutron stars

Temperature T < 20 MeV

Density $\rho < 10 \rho_0$

Lifetime T ~ infinity

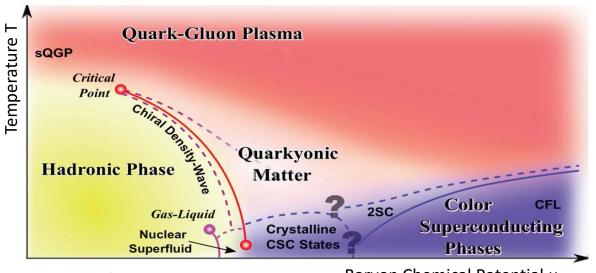
Neutron star mergers


Temperature T < 70 MeV

Density $\rho < 2 - 6 \rho_0$

Reaction time ~ 10 ms (GW170817)

Heavy ion collisions at SIS100


Temperature T < 120 MeV

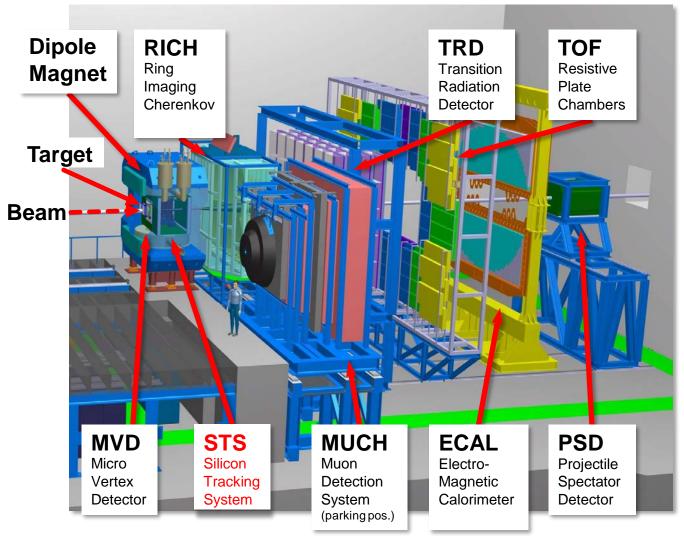
Density $\rho < 8\rho_0$

Reaction time $t \sim 10^{-23} s$

CBM Physics Aim

Systematic exploration of strongly interacting matter at large baryonic densities with high accuracy and rare probes.

Courtesy of K. Fukushima & T. Hatsuda


Baryon Chemical Potential μ_{B}

- QCD Equation-of-State
- Search for exotic phases and 1st order phase transition
- Critical point
- Restoration of chiral symmetry
- Strange matter
- Charm production

The CBM-STS

introduction of the detector system, its components, development of component assembly

STS in CBM Experiment at FAIR

- Tracking acceptance: $2^{\circ} < \theta_{lab} < 25^{\circ}$
- Free streaming DAQ

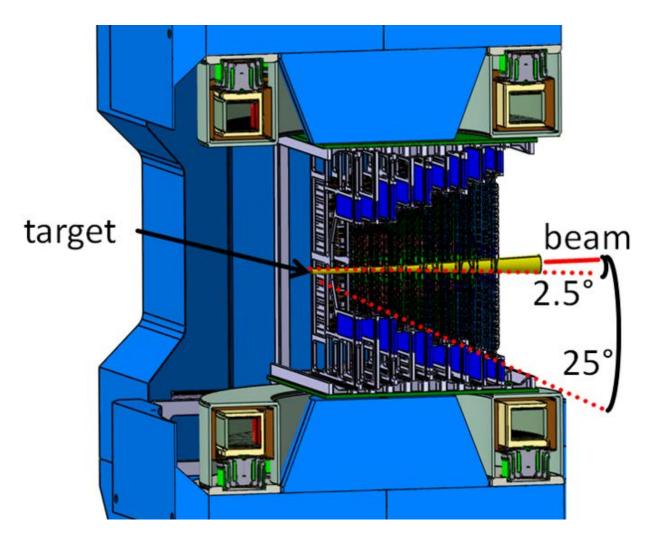
$$R_{int} = 10 MHz (Au+Au)$$

with $R_{int}(MVD) = 0.1 MHz$

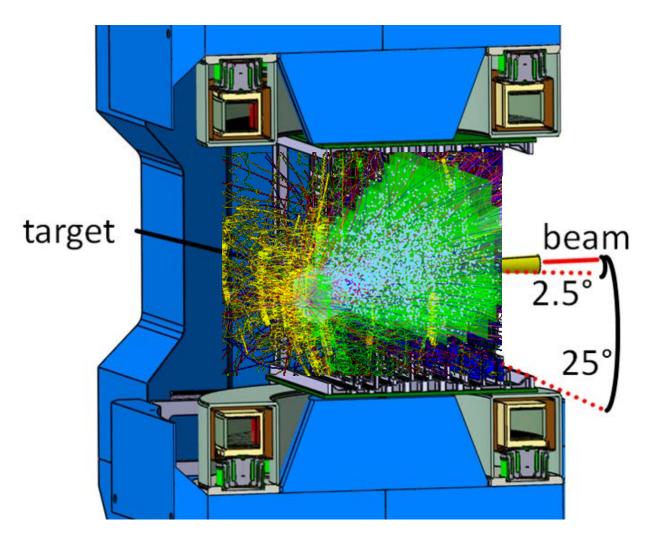
 Software based event selection

Silicon Tracking System

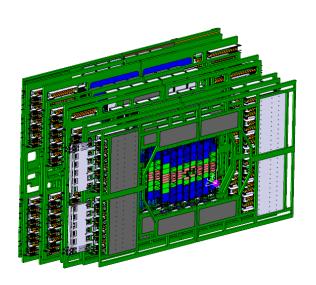
Central CBM detector: charged-particle tracking + momentum measurement

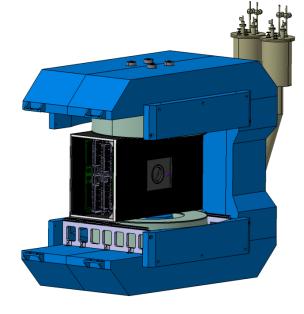

Challenges:

- up to ~ 700 charged particles per heavy-ion collision → high granularity
- $10^5 10^7$ heavy-ion collisions per second \rightarrow fast, radiation tolerant


Technical solutions:

- 8 tracking stations, \approx 4 m² total area, 896 detector modules, 106 ladders
- double-sided silicon microstrip sensors
 - hit spatial resolution ≈ 25 μm
 - material budget per tracking station: $\approx 0.3\% 2\% X_0$
 - radiation tolerance up to 1×10^{14} n/cm² (1 MeV equivalent)
- self-triggering electronics, time-stamp resolution ≈ 5 ns
- low-mass detector modules/ladders


Silicon Tracking System

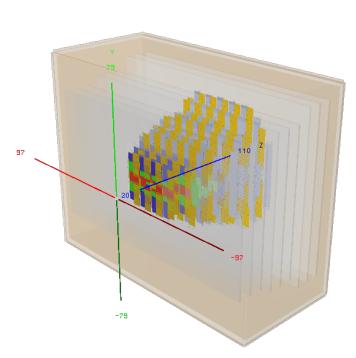

Silicon Tracking System

System Engineering

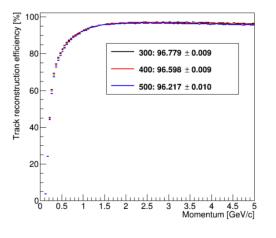
Consistent design being worked on. Current issues:

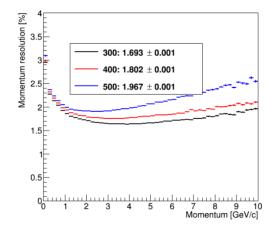
Mechanical frames:

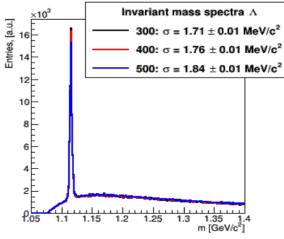
- Sensor cooling
- Cooling plate shape / technology
- Cabling not tested
- Material
- Rail system
- Positioning / Adjustment


Thermal enclosure:

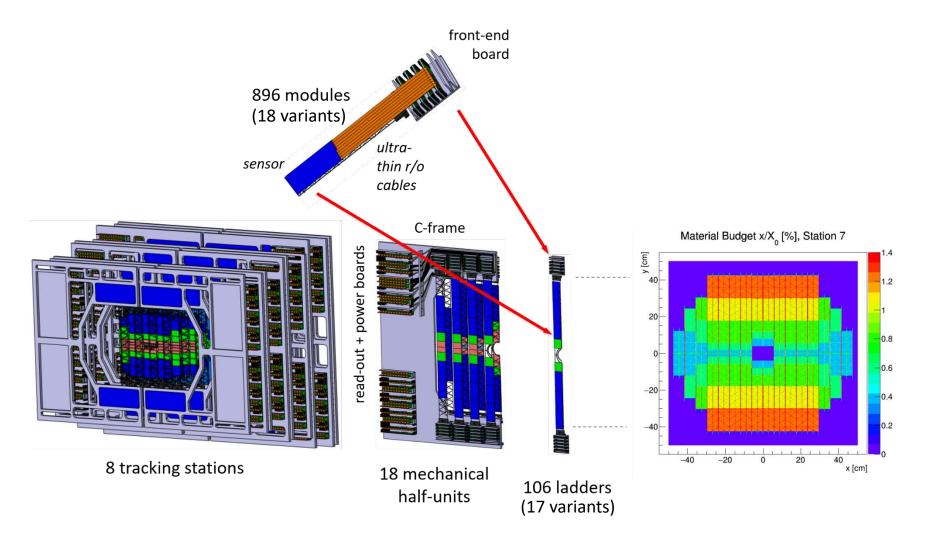
- Sealing
- Panel connections
- Material budget rear panel
- Overall stiffness
- C-Frame positioning / measurement / adjustment concept
- Service / support mechanics
- Overall assembly procedure is an idea


Global system aspects:


- STS services, mechanic supports and details
 - Cabling
 - Cooling
 - Positioning
 - Safety / emergency systems
 - Integration upstream and downstream
 - vibrations / structural analysis


Updated Performance Studies

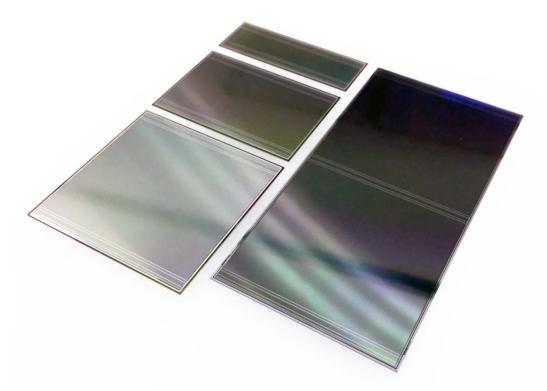
detector model with passive materials



- track reco efficiency
- momentum resolution
- physics observables
- data rates
- delta electrons
- ..

STS – exploded view

Silicon Microstrip Sensors

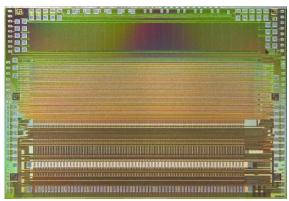

- double-sided
- 1024 strips of 58 μm pitch
- 4 variants/strip lengths
- final prototypes realized with two vendors:
 - CiS, Germany
 - Hamamatsu, Japan

 $6.2 \times 2.2 \text{ cm}^2$

 $6.2 \times 4.2 \text{ cm}^2$

 $6.2 \times 6.2 \text{ cm}^2$

6.2 x 12.4 cm²

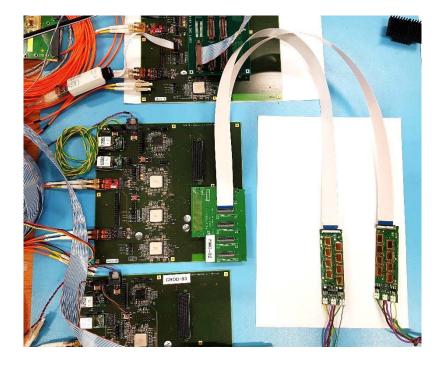

• Internal Sensor Review: April 2018

• Tendering: August – September 2018

Offers received, negotiations ahead

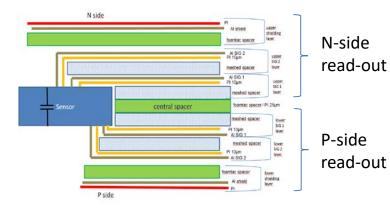
• Aim: Production 2019 – 2020

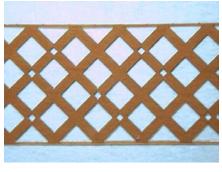
Front-end ASIC and read-out electronics


current prototype STS-XYTER v2.0

STS-XYTER v2.1 submitted

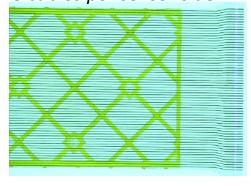
128 channels
self-triggering
5 bit ADC, time resolution < 5 ns


Front-end electronics board FEB-8

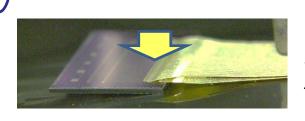

Common Read-out Board test chain with GBT chipset (not applicable to BM@N)

Micro-cables

cable stack: thickness $\sim 800 \, \mu m / 0.23\% \, X_0$



meshed spacer layer



(foam spacers also)

64 traces per signal layer 2 signal layers per cable 8 cables per sensor side

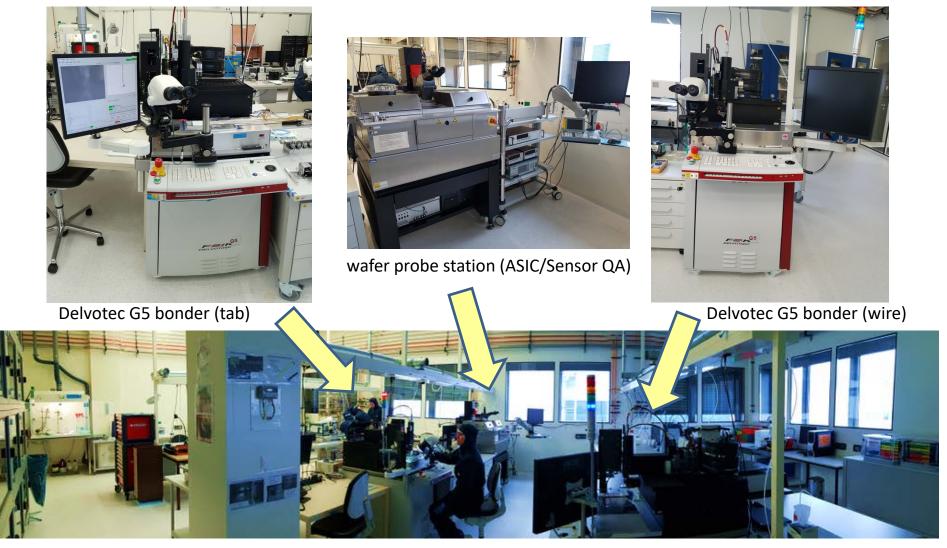
signal layer: 64 Al lines of 116 μm pitch, 14 μm thick on 10 μm polyimide

tab-bonding of 2 signal layers to Al pads on ASIC and sensor

trace capacitance 0.45 pF/cm trace lengths 5 - 55 cm

Alternative Cu cable under test.

STS assembly centers: GSI and JINR



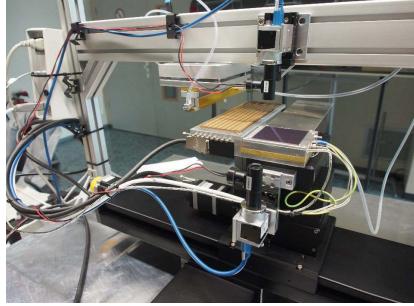
Clean Room @ GSI Detector Laboratory

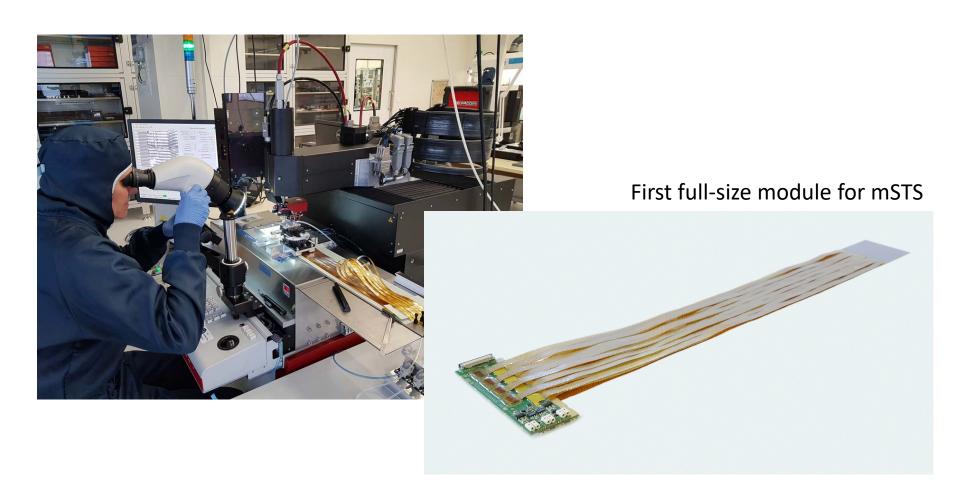
Clean Room @ GSI Detector Laboratory

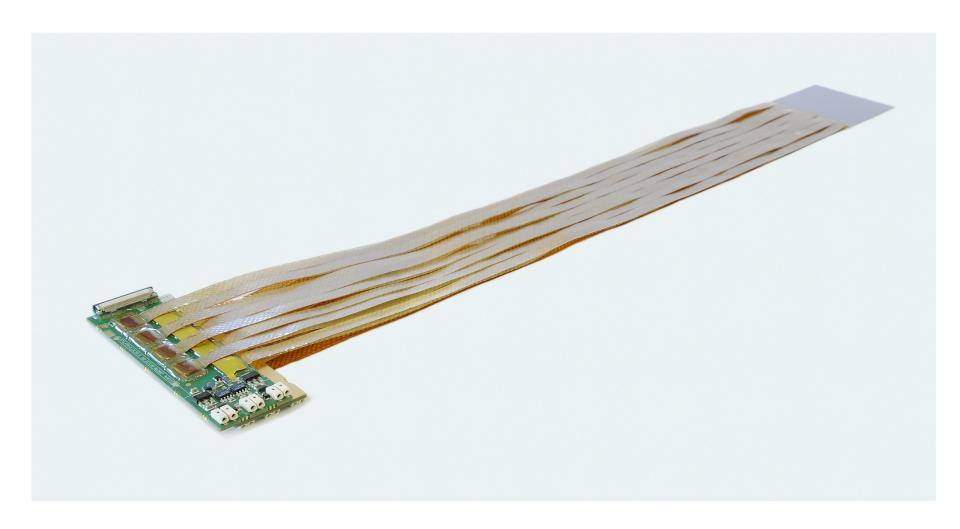
module assembly

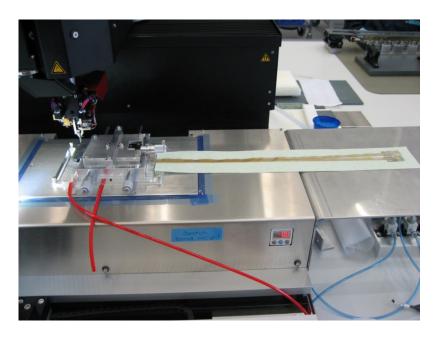
ladder assembly

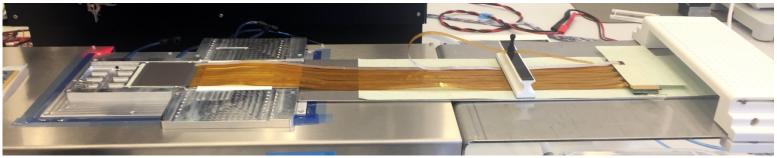
N₂ storage cabinets

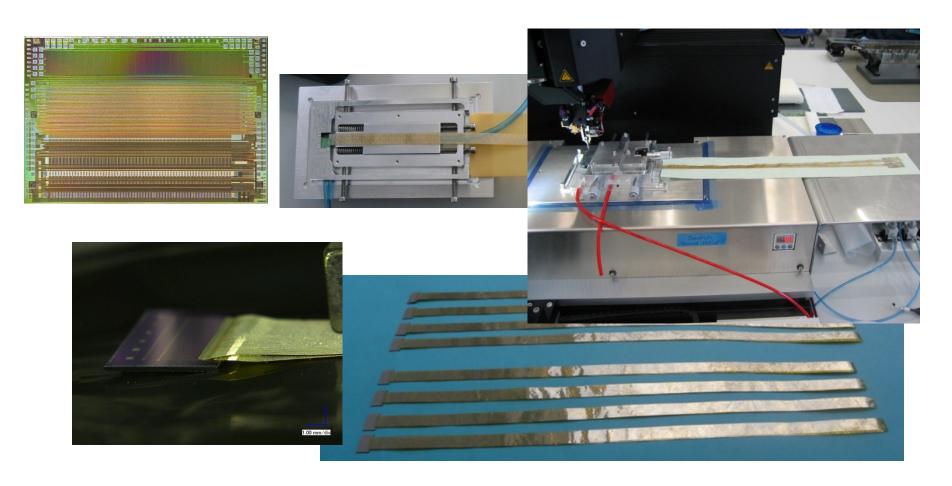



Module assembly satellite to GSI: KIT

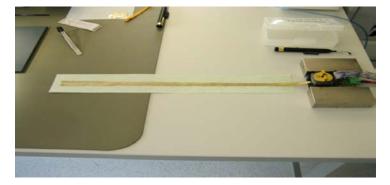

Karlsruhe Institute of Technology, Germany

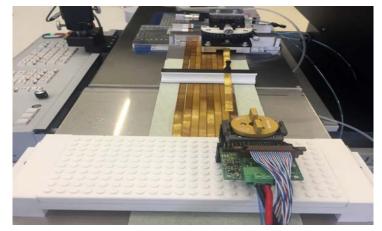




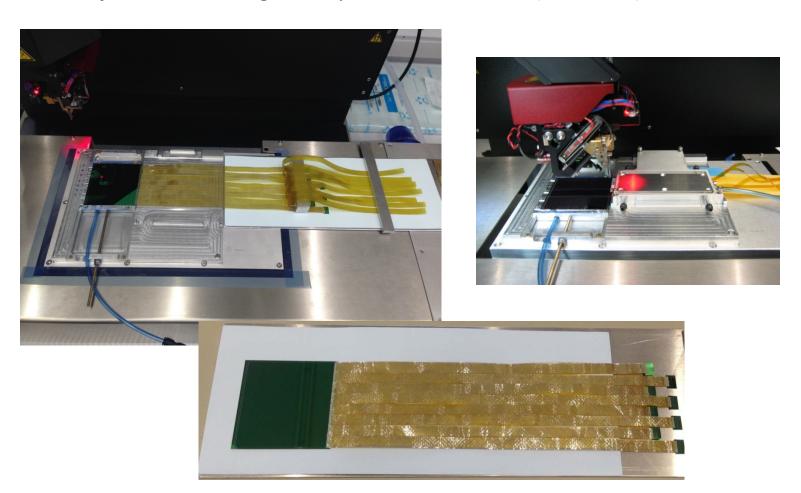

TAB-bonding of microcables to the silicon sensor

TAB-bonding of microcables to the STS-XYTER-ASIC's


step 1: tab bonding of read-out ASICs to micro cables → "chip cables"



"Pogo pin" test station


for ASICs, chip-cables, and during chip installation into FEB-8

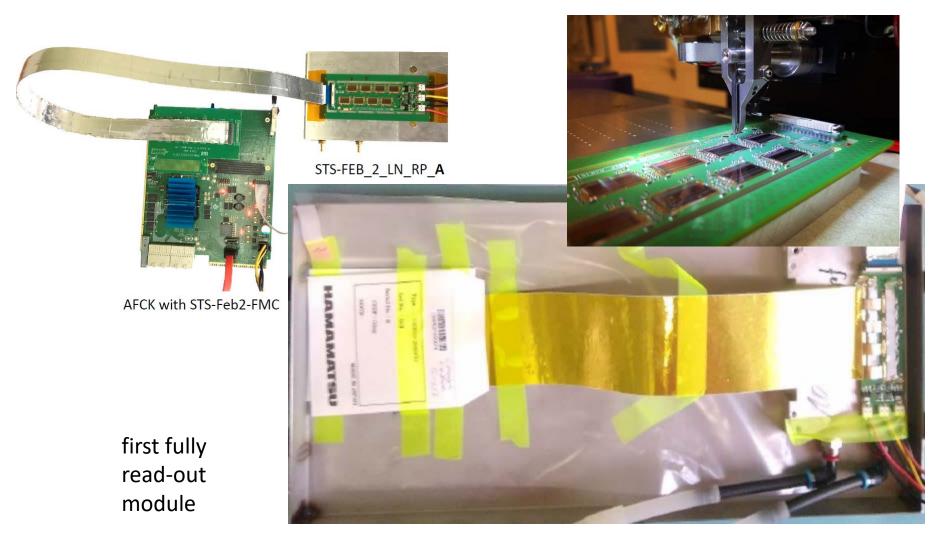
Top socket with latches and knob bottom socket with cavity for the ASIC and vacuum fixation

step 2: tab bonding of "chip cables" to sensor (front side)

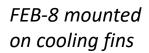
step 3: installation of read-out chips into front-end board (front-side)

dummy

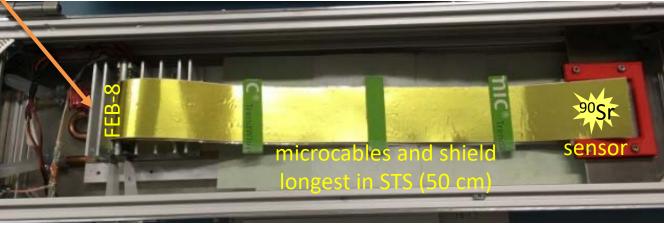
functional ladder


steps 4-6: completion of the assembly steps for the back-side

full module (one of 18 variants – differing in sensor variant and micro-cable lengths)

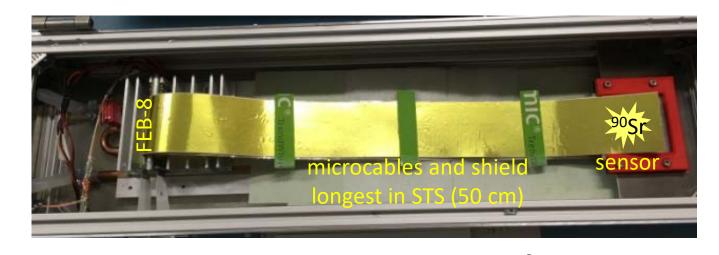

to be added: shielding layers on front and back-side

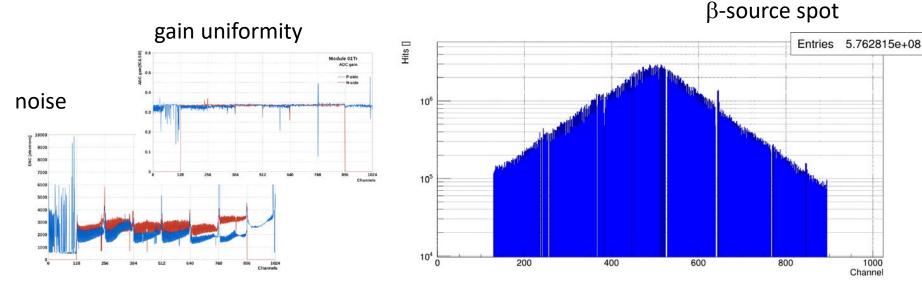
Module assembly at JINR-VBLHEP



Module test stand at GSI

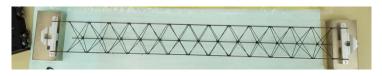
connections to power supplies and read-out system, DAQ

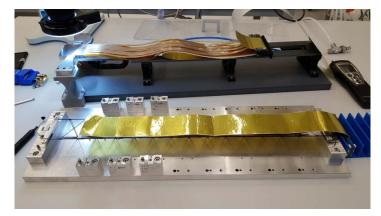




First STS module with full 2-side r/o

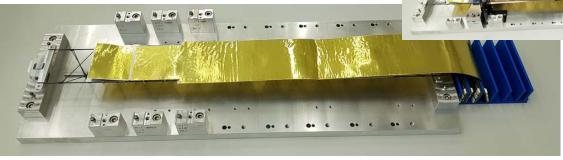
2 x 1024 channels (front/back side)


detailed study ongoing



1000 Channel

Ladder assembly at GSI

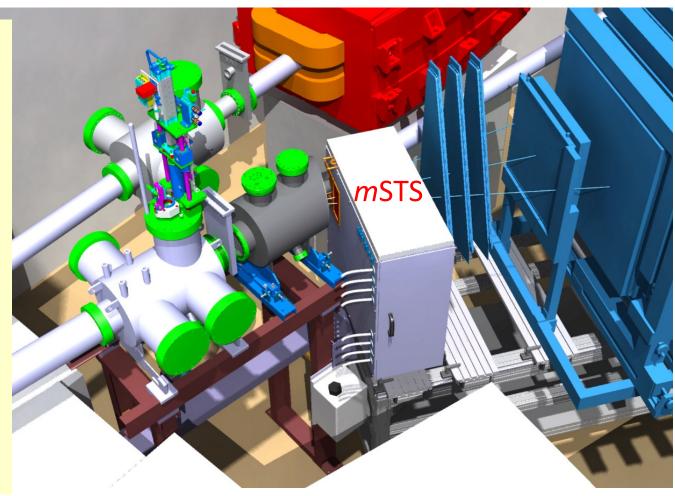

ladder #0 for mSTS

application of glue onto L-legs

module #0 installed on ladder; module #1 on transfer tool

module #1 tansferred, fixed during curing of glue

transfer of module


#1 to ladder

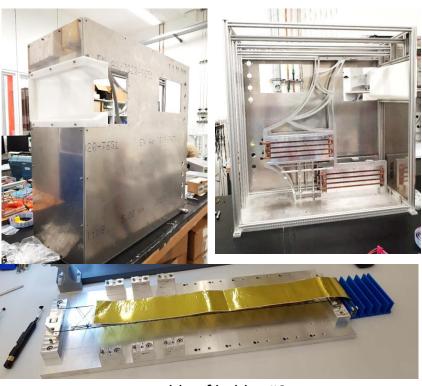
mSTS in mCBM at SIS18

Demonstrator
experiment for
data transport
and online event
finding from
prototype
detector systems
to the Green IT
Cube

mSTS mMUCH mTRD mTOF

2018 – 2020/21/22

https://fair-center.eu/for-users/experiments/nuclear-matter-physics/cbm/projects/mcbm.html

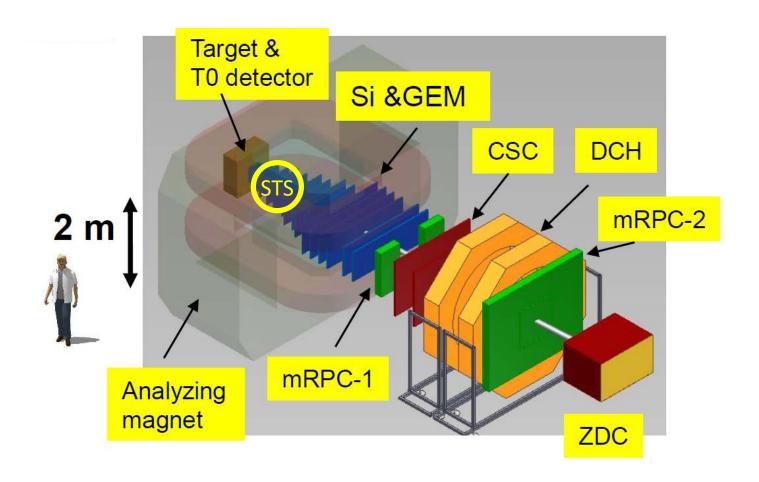

mSTS system

2 tracking stations:

#0: 2 ladders à 2 modules (2018) 3 ladders à 3 modules (add 2019) station #0 area 12 x 12 cm²

station #0: C-frames #0 and #1

mSTS box with C-frames



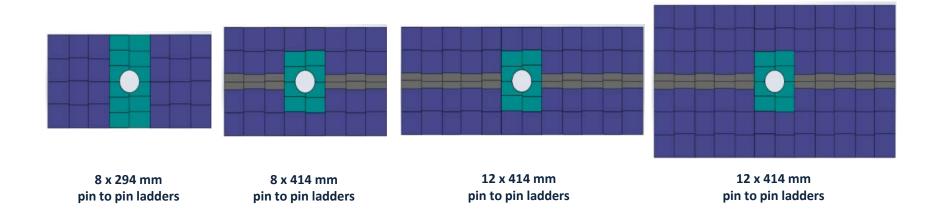
assembly of ladder #0

→ installation into mCBM: 11/2018

The BM@N-STS

STS in BM@N-2 experiment at Nuclotron

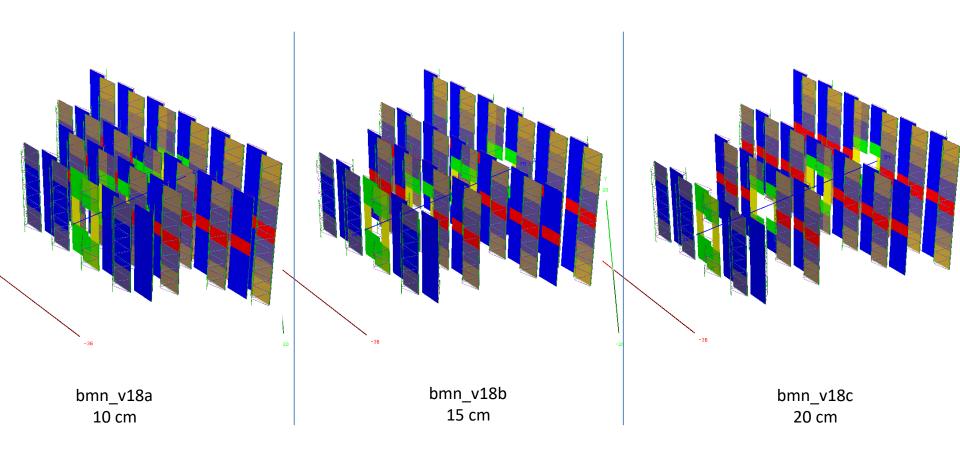
Workshop on DSSD-GEM Tracking System for BM@N-2



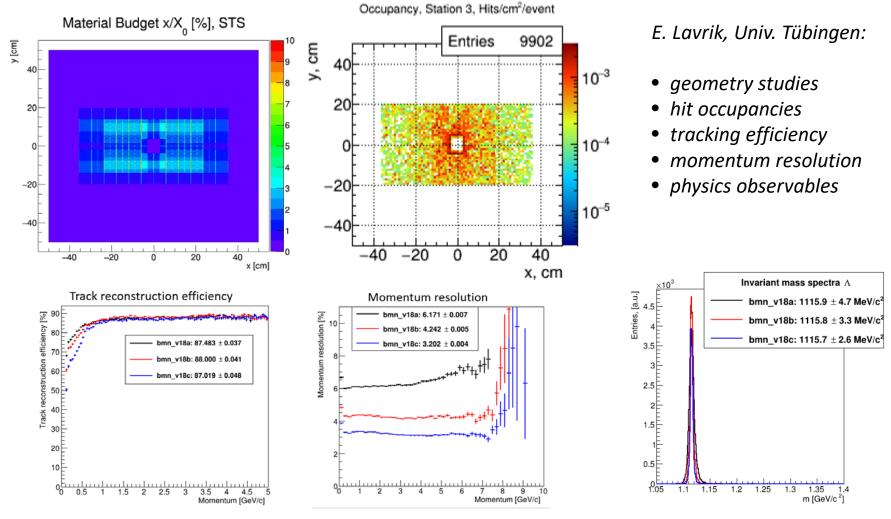
5-6 July 2018 at JINR LHEP

- BM@N upgrade for high intensity Au beams
- BM@N simulations
- BM@N-STS layout
- R/o electronics, DAQ
- CBM-STS status and project plan, link to BM@N-STS
 - → <u>Indico agenda</u>

JINR News 10 July 2018: http://www.jinr.ru/posts/joint-plans-for-the-nearest-future/


Tentative layout of the STS for BM@N2

Num. of modules	Size of the sensor	Num. of modules	Size of the sensor	Num. of modules	Size of the sensor	Num. of modules	Size of the sensor
24	62*62 mm	44	62*62 mm	28	62*62 mm	68	62*62 mm
8	42*62 mm	4	42*62 mm	4	42*62 mm	4	42*62 mm
4	42*62c mm	4	42*62c mm	4	42*62c mm	4	42*62 mm
36 mc	odules	20	22*62 mm	12	22*62 mm	20	22*62 mm
		72 mo	dules	48 mo	dules	96 mod	dules


Total numbers: 252 modules, 40 ladders

Geometries

implemented for simulations (E. Lavrik, Univ. Tübingen)

Simulation studies

III.

CBM-STS timeline, links to BM@N planning

CBM-STS Project Plan

Official planning document at GSI-FAIR, together with other planning documents from CBM, civil construction and accelerator.

General timeline: 2018 – 2024

- Pre-production phase: until Q3/2019 (mSTS completed with 2 tracking stations)
 - development of final components and prototypes, as well as assembly methods
- Production readiness: reviews/milestones including:

```
    STS module/ladder assembly procedure: 9/2018
    STS sensors ready for order 10/2018
    STS Core Preliminary Design Review: 11/2018
```

Production phase: 2019 until 2024 2/2024 STS ready for installation

CBM-STS Project Plan summary

Task Name	Start	Finish
STS ready for installation	22-02-24	22-02-24
STS assembly and commissioning in lab		25-01-24
Ladder assembly (GSI)	21-05-20	18-05-23
Ladder assembly (JINR)	18-06-20	18-05-23
Module assembly (GSI)	30-01-20	15-09-22
Module assembly (KIT)	30-01-20	15-09-22
Module assembly (JINR)	27-02-20	15-09-22
STS-XYTER ASIC production	07-06-19	02-07-20
Microcable production	06-04-19	12-04-21
FEB-8 production	19-03-19	17-02-20
Sensor production	10-01-19	07-12-20
STS-XYTER ASIC production readiness review	06-06-19	06-06-19
Sensor tendering completed, orders placed	27-02-18	10-12-18
STS core readiness	30-10-18	30-10-18
Module/ladder assembly readiness [internal]	15-09-18	15-09-18
Sensor readiness	23-04-18	10-10-18

Upcoming CBM-STS milestones

•	Sensor Readiness completed	(10/2018)
	 Reviews held in 3/2017 and 4/2018 	
	 Summary report – Technical Note close to finalization 	
•	Sensor tendering:	
	 Deadline for reception of offers 	(28/9/ 2018)
	 Negotiations with vendors, orders placed 	(10 - 12/2018)
•	Module/ladder assembly readiness [internal]	(15/9/2018)
•	STS core readiness	(11/2018)
•	mSTS with tracking station 0 installed in mCBM	(11/2018)
•	Start of sensor production	(1/2019)
•	Start of FEB-8 production	(3/2019)
•	Start of microcable production	(4/2019)
•	STS-XYTER ASIC production readiness review	(6/2019)
•	Start of STS-XYTER ASIC production	(7/2019)
•	mSTS with tracking stations 0 and 1 installed in mCBM	(Q3/2019)

Links to BM@N-2 STS planning

- CBM-STS construction model fully detailed
 - modules and ladders exactly defined: 11/2018
 - available for BM@N-STS construction model
- CBM-STS front-end electronics and read-out chain demonstrated
 - start adaptation for BM@N: in the course of mCBM preparation and running: 11/2018
 - including prior definitions of BM@N r/o needs, e.g. at this meeting
- CBM-STS modules first of series available
 - lessons learned from mSTS: 11/2018, Q3/2019
 - start producing modules for BM@N-STS: 2/2020
- CBM-STS ladders first of series available
 - lessons learned from mSTS: 11/2018
 - start producing ladders for BM@N-STS: 6/2020

In order to use the same module and ladder make in BM@N as later in CBM:

- → modules available in larger numbers for BM@N earliest from mid 2020 on
- → ladders available in larger numbers for BM@N-STS earliest from end 2020 on
- → a few prototypes may be available already earlier (in 2019 2020)
- → plan BM@N-STS system and component availability accordingly, detector completed in 2021?

Estimated module production time

module assembly – most time consuming assembly step

JINR team:

Basic stages of assembly As Assembling the "Chip-Cable" Cutting and testing Sensor assembly	Number of elements (pcs) sembling of 1 technic 8 16	Time for the operation (min) the p-side ocian and 1 er 10 5 240	ngineer	People required for stage	Encapsul ation (min)	Total running time (min) 200 80 360
Total:			400			640
	1 technic	ian and 2 en	gineers			
Installation of chips on the PCBI	4	5		1	80	100
Bonding of the 1 row of chips	1	15	15	1	30	45
Installation of chips on the PCBI	4	5	20	1	80	100
Bonding of the 2 row of chips	1	15	15	1	30	45
Assembly shielding layer	1	30	30	2	120	150
Total:			100			440
Assembling of the n-side of the detector						
	1 technic	cian and 1 er	ngineer			
Assembling the "Chip-Cable"	8	10	80	2	120	200
Cutting and testing	16	5	80	2		80
Sensor assembly	1	240	240	1	120	360
Total:			400			640
	1 technic	ian and 2 en	gineers			
Installation of chips on the PCBI	4	5	20	1	80	100
Bonding of the 1 row of chips	1	15	15	1	30	45
Installation of chips on the PCBI	4	5	20	1	80	100
Bonding of the 2 row of chips	1	15	15	1	30	45
Assembly shielding layer	1	30	30	2	120	150
Total:			100			440
Assembly time (h)	17		Assembly with encapsulation (h		36	
Working time per day (h)	7		Work	ing days pe	ryear	246

Mockups modules assembled at JINR

Modules per month Modules per year	10 104		
Total	Tin	ne	
Time for assembly 252 modules	2!	5	month
inoduics			
Time to assembly 20% spare	5		month

BM@N-STS modules:

2.5 years

Module + Ladder production volume

CBM-STS		
JINR assembly:	400 modules, 46 ladders	1 1E9/ spares
GSI (+KIT) assembly:	496 modules, 60 ladders	+ 15% spares

BM@N-STS		
JINR assembly:	252 modules, 40 ladders	+ 15% spares

→ consider a further satellite assembly lab

→ MEPhI for module assembly ?