

ECRIS-Upgrade at GSI

ECRIS = Electron Cyclotron Resonance Ion Source

1

Outline

- ECRIS Working Principle and Characteristics
- ECRIS@GSI Status quo and present performance
- Future requirements
- Upgrade strategy
- 18 GHz upgrade
- Technical concept and outlook

ECRIS Working Principle and Characteristics

3

Magnetic Confinement and ECR Surface

GSI Helmholtzzentrum für Schwerionenforschung GmbH

4

Klaus Tinschert

31.01.2019

ECRIS's History

THE 16 GH7

ECRIS Empirical Scaling Law

High-B mode principle

$$\frac{B_{\max}}{B_{ECR}} \ge 2$$

ECRIS Development

<i>f</i> = 10 <i>GHz</i>	Þ B _{max} ³ 0.72 T
<i>f</i> = 14 <i>GHz</i>	Þ B _{max} ³ 1.0 T
<i>f</i> = 18 <i>GHz</i>	Þ B _{max} ³ 1.3 T
f = 28 GHz	Þ B _{max} ³ 2.0 T

Geller's Supermafios (1975, 3 MW! 16+8 GHz)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

5

Klaus Tinschert

ECRIS Properties

Properties and benefits:

- No filaments
 → reduced maintenance
- Low material consumption
 → long endurance and high efficiency
- Excellent long time stability
- High charge states → no postacceleration required, direct injection into post-stripper
- The very same ion source is likewise appropriate for cw-mode operation and for pulsed operation
- → ECRIS is well suited for long beam times under stable operating conditions (UNILAC and SIS)
- → Enables a parallel operation in combination with high current ion sources (HLI ↔ HSI)

Main future requests of the experiments:

- New ion beam species to be developed from the ion sources
- Increase of ion beam intensities for most ion species

According to scaling law:

6

Available charge states and intensities increase with operating frequency ω_{RF}

- → Increase of microwave frequency: $\omega_{RF} = \omega_{ECR} \sim B$
- Higher magnetic flux density necessary (superconducting magnets)

GSI Accelerator Facilities

7

ECRIS @ GSI – Status Quo

- The CAPRICE ECR ion source (ECRIS) is in operation at the HLI since 1992.
- Total number of its operating hours for the accelerator: > 5000 hours per year.
- Despite repeated upgrades the ion source and its ancillary equipment show age related deterioration.
- Failure probability increased disproportionately in the last years.

→ This outdated technical standard implies the replacement by adequate modern technologies.

8

Selection of Ion Species from ECRIS

Gaseous Elements			Solid Elements			Solid Elements								
and Compounds				and Compounds				and Compounds						
Element	Isotope	Charge States	Main Gas	Aux Gas	Element	Isotope	Charge States	Sample Material	Aux Gas	Element	Isotope	Charge States	Sample Material	Aux Gas
н	$^{1}H_{2}$	1	H ₂	-		⁶ Li	1	LiF, *	He	Fe	⁵⁸ Fe	8, 9	Fe	He
С	¹² C	2	CO ₂	0 ₂		⁷ Li	1	LiF	He		⁵⁸ Ni	8, 9	Ni	He
0	¹⁶ 0	3	02	He		²⁴ Mg	5	Mg	He	Ni	⁶² Ni	9	Ni, *	He
0	¹⁸ O	3	0 ₂ , *	He	Mg	²⁵ Mg	4	Mg, *	He		⁶⁴ Ni	9	Ni, *	He
No	²⁰ Ne	4	Ne	He		²⁶ Mg	4, 5	Mg, *	He		⁶⁴ Zn	10, 11	ZnO	0 ₂
Ne	²² Ne	4	Ne, *	He	c:	²⁸ Si	5	SiO	He	Zn	⁶⁸ Zn	10	ZnO, *	0 ₂
	³² S	5	SO ₂	0 ₂	51	³⁰ Si	6	SiO, *	He		⁷⁰ Zn	10	ZnO, *	0 ₂
S	³⁴ S	6	SO ₂ , *	0 ₂	62	⁴⁰ Ca	6, 7	Ca	He	Ag	¹⁰⁷ Ag	15	Ag	0 ₂
	³⁶ S	5	SO ₂ , *	0 ₂	Ca	⁴⁸ Ca	7, 10	Ca, *	He		¹¹² Sn	15, 17	Sn, *	0 ₂
٨٣	³⁶ Ar	5, 6, 7	Ar, *	0 ₂	т	⁴⁸ Ti	7	Ti	He	Sn	¹¹⁴ Sn	16, 17	Sn, *	0 ₂
AI	⁴⁰ Ar	6, 7, 8	Ar	0 ₂		⁵⁰ Ti	7, 8	Ti, *	He		¹¹⁸ Sn	16	Sn, *	0 ₂
K.	⁸⁴ Kr	12	Kr	He	V	⁵¹ V	8	V	He		¹²² Sn	17	Sn, *	0 ₂
N.	⁸⁶ Kr	12	Kr, *	He		⁵⁰ Cr	8	Cr, *	He		¹²⁴ Sn	16	Sn, *	0 ₂
	¹²⁴ Xe	15, 16	Xe, *	02	Cr	⁵² Cr	7	Cr	He	Au	¹⁹⁷ Au	24	Au	02
Xe	¹²⁹ Xe	18	Xe, *	02		⁵⁴ Cr	8	Cr, *	He	Pb	²⁰⁸ Pb	27	Pb, *	02
	¹³⁶ Xe	18, 19	Xe, *	0 ₂	8	-			-	8			-	

* enriched elements * enriched compounds

9

→ Evaporable solids (metals) – vapor pressure of ≈10⁻² mbar at T < 1600°C for Standard-Temperatur-Oven (STO), and at T < 2000°C for High-Temperature-Oven (HTO)</p>

HLI Ion Beams 2002-2008

HLI Ion Beams 2008-2015

GSI Helmholtzzentrum für Schwerionenforschung GmbH

11

Consumption & Efficiencies

	ion species of accelerated charge state q	natural abundance (%)	isotope enrichment (%)	sample material	material consumption (μg/h)	average particle intensity (pµA)	efficiency all charge states (%/q _i q _f)	efficiency charge state q (%)
	³ He ¹⁺	0.00014	99.9	He				
	⁶ Li ¹⁺	7.5	95	LiF	1120			
	²² Ne ⁴⁺	9.25	99.9	Ne				
	²⁵ Mg ⁴⁺	10	99	Mg	620	38	26/28	5.7
	²⁶ Mg ⁵⁺	11	99	Mg	310/170*	20	26/47*/29	6.4/11.5*
	³⁰ Si ⁶⁺	3.1	99.5	SiO	1090/580*	13.3	5/10*/3 9	1.3/2.6*
1	³⁴ S ⁵⁺	4.2	80	SO ₂	660	12.4	14/29	2.5
	³⁶ S ⁵⁺	0.02	79	SO ₂	420	12.4	23/28	4
	³⁶ Ar ⁷⁺	0.34	99.5	Ar				
	⁴⁸ Ca ⁷⁺	0.19	96	Ca	210	6.6	40/312	5.7
	⁴⁸ Ca ¹⁰⁺	0.19	96	Ca	200	14.0	43/311	12.6
	⁵⁰ Cr ⁷⁺	4.35	96.5	Cr	2300			
	⁵⁴ Cr ⁷⁺	2.37	99	Cr	2300			
	⁵⁸ Fe ⁸⁺	0.28	>90	Fe	3100/1440*			
	⁶⁴ Ni ⁹⁺	0.93	93	Ni	1300	4.5	4.5/413	0.8
	⁷⁰ Zn ¹⁰⁺	0.6	95	ZnO	3170	7.8	3.3/514	0.5
	¹¹² Sn ¹⁵⁺	0.97	99	Sn	890			
	¹¹⁴ Sn ¹⁷⁺	0.65	87	Sn	1000			
	¹²⁴ Sn ¹⁶⁺	5.8	96	Sn	1200			
	¹²⁴ Xe ¹⁷⁺	0.1	99.9	Xe				
	¹³⁶ Xe ¹⁸⁺	8.9	99.9	Xe	550	2.2	50/625	2

- analysed ion currents in front of the accelerator
- **no** correction for LEBT transmission

* with material recycling

⁴⁸Ca¹⁰⁺ Beam Efficiency

Ar Beam Stability

⁴⁰Ar⁹⁺ run of 36 days

- without any beam interruptions
- no retuning necessary

Setting up of ECR ion source and accelerator for ⁴⁰Ar⁹⁺

Stable beam of ⁴⁰Ar⁹⁺ during the run

Ar Beam Stability

Last period of the Engineering Run delivering stable beam of ⁴⁰Ar⁹⁺ to the CW-Demonstrator@HLI after intensity optimisation

Afterglow Mode

- By pulsing the microwave power, the extracted current of highly charged ions increases in burst pulses.
- The afterglow current can be optimized by tuning the pulse duration or the pulse period or the duty factor $(d=t_p/T_p)$.

FAIR + LINAC Requirements

Two clients:

- Synchrotron (FAIR): Highest ion energies at low duty cycle; high pulse intensities
- LINAC: Medium energies at high duty cycle; high cw intensities
- ECRIS @GSI in cw operation or in afterglow mode
- Pulsed operation for FAIR: up to 4 pulses per second; 150 μs; asymmetric timing scheme
- Afterglow operation for FAIR: 10 pulses per second + electrostatic beam chopper
- FAIR science: great variety of ion species including rare and very rare isotopes
- LINAC science: predominantly rare and extremely rare isotopes (e.g. ⁴⁸Ca)

Operational requirements

- Mechanical design: as simple as possible & based on well-established techniques
- Basic requirements: easy handling & high reliability
- Easy change of main gas/auxiliary gas or of oven (lock system)
- Ion production: high ionisation efficiency of metal ion beams
- Short intervention times for change of ion species/maintenance
- Good reproducibility of ion beams
- Maintenance: Facilitation by appropriate technical construction
- Easy cleaning of the plasma chamber

Future Ion Beam Requests

- Great variety of ion beams requested for FAIR science and UNILAC science
 including beams of rare isotopes
- Very economical use of enriched materials for ion beam production from rare and extremely rare (limited availability on the world market) isotopes
- Ion Beam production from ECRIS mandatory for:

Charge States

"Reasonable" charge states for injection into RFQ:

- 15 kV < U_{ex} < 30 kV (no high voltage platform)
- Fixed input velocity (specific input energy) defined by RFQ: 2.5 keV/u or 4.0 keV/u
- Particle factor: I_{el}/q (experimentalists as beam users mostly request high particle intensity)
- Choice of charge state: depending on CSD as low as reasonably possible (best compromise!)

v _{spec} →		2.5 keV/u	4.0 keV/u		High Charge S	State Injector	
m/q →	2.0 - 8.5	2.0 - 8.5	2.0 - 8.5		with CAPRICE-ECRIS 2.5 keV/u; m/q < 8.5		
q/m →	1/8.5 - 1/2	1/8.5 - 1/2	1/8.5 - 1/2				
U _{ex} →		5 kV - 22 kV	8 kV - 34 kV				
Ion species	theoretical charge state	reasonable charge state	reasonable charge state	particle factor	charge state	U _{ex} (kV)	
H ₂	1	1	1		1	5	
⁴ He	1 2	1	1 2	2	1	10	
¹² C	2 6	2	2 4	2	2	15	
²² Ne	3 10	3 5	3 6	2	4	13.75	
⁴⁸ Ca	6 20	7 11	7 13	2	10	12	
⁸⁴ Kr	10 36	10 16	11 22	2	12	17.5	
¹³⁶ Xe	16 54	17 23	18 35	2	18	18.9	
¹⁹⁷ Au	24 79	24 32	26 52	2	24	20.52	
²⁰⁹ Bi	25 83	26 34	28 55	2	27	19.35	

Increase of Average Intensity

 High intensity in adequate charge states
 Higher duty cycle in LINAC (requires higher charge states)

Semiempirical scaling law: I(A^{q+}) ~ ω_{ECR}^2

- increase of microwave frequency:
 ω_{RF} = ω_{ECR} ~ B
- higher magnetic flux density (superconducting magnets)

Dedicated 18 GHz ECRIS + 28 GHz SC-ECRIS:

- higher electron energies (improved generation of HCI)
- higher plasma densities (enhanced extractable ion current)
- improved ion confinement (reduction of losses)
- large plasma volume (reduced plasma wall interactions)

ECRIS Performance Upgrade – Strategy

Boundary conditions:

- 14.5 GHz CAPRICE ECRIS (status quo):
 - limitation of intensities
 - Imitation to ion masses only up to Xe (not available e. g.: Nd, Sm, Au, Pb, Bi, U)
- Overcome these limitations
 → 18 GHz ECRIS + 28 GHz SC-ECRIS
- Available charge states and intensities increase with operating frequency (14 → 18 → 28 GHz)
 e. g. Xe²⁰⁺ 25 µA CAPRICE@14.5GHz → 200 µA PKISIS@18GHz = factor 8 and Xe²⁷⁺ 80 µA PKISIS@18GHz → 800 µA SECRAL@28GHz = factor 10
- Applicability of 2 operating modes:
 - CW → no limitation of duty cycle → UNILAC/CW-LINAC
 - Pulsed → SIS18 Requirements → SIS/FAIR

Approach in stages:

- **Oth stage:** Continued operation of the existing 14.5 GHz CAPRICE ECRIS
- 1st stage: Moderate upgrade at moderate cost with a conventional ECRIS (RT, Hybrid) @ 18 GHz (complementary ion source for redundancy / finally replacing 14.5 GHz CAPRICE ECRIS)
- 2nd stage: Full performance upgrade with a Superconducting-ECRIS @ 28 GHz with separate injection beam line

18 GHz ECRIS (1st Stage)

Relevant current projects and developments

- Several promising approaches utilizing new technologies and new materials
- Easy handling; based on well-established techniques

Options:

- HIISI, University of Jyväskylä, Finland; RT: permanent magnet hexapole + RT solenoid coils
- AISHA, INFN-LNS, Catania; Hybrid: permanent magnet hexapole + SC solenoid coils
- PK-ISIS, Pantechnik S.A., Bayeux, France; Hybrid: permanent magnet hexapole + SC solenoid coils

HIISI (University of Jyväskylä)

28 GHz SCECRIS (2nd Stage)

General benefits

- Considerably increased intensities of ions in medium and high charge states
- Adjustable axial and radial magnetic fields for optimum adaptation to medium and high charge states
- Established cryogenic technology
- Possible synergy for collaboration and a joint project GANIL GSI (SPIRAL2 phase 1++ & FAIR@GSI)

Realised projects of the past decade

- RIKEN-SCECRIS, RIKEN, Japan (right) → second item planned @RIKEN
- SECRAL, IMP, China → second item under commissioning @IMP

18 GHz ECRIS Upgrade

Courtesy of Hannu Koivisto, JYFL, Finland

Objectives and approach for HIISI@Jyväskylä (JYFL)

- Increase of ion energy out of K130 cyclotron from 9 MeV to 15 MeV: 10 nA of Xe⁴⁴⁺
- Increase of ion current of medium charge states by factor >5
- 14 GHz ECRIS cannot meet the requirements
- Evaluation of existing ECRISs
- SUSI (NSCL/MSU) has demonstrated adequate performance in 18 GHz operation mode
- Design basis for JYFL 18 GHz ECRIS
- Replace SC concept of SUSI by RT solution

SUSI = Superconducting Source for lons HIISI = Heavy Ion Ion Source Injector

Klaus Tinschert

Magnet System

Courtesy of Hannu Koivisto, JYFL, Finland

Permanent Magnet Properties

Courtesy of Hannu Koivisto, JYFL, Finland

Figure 4: Remanence magnetic field B_{rem} of grade N48 permanent magnet experimentally defined as a function of temperature.

Permanent Magnet Properties

Courtesy of Hannu Koivisto, JYFL, Finland

Demagnetisation analysis -> magnets to be kept below 20°C

ECRIS-2014 Workshop

x (mm)

HIISI Innovative Solutions

Courtesy of Hannu Koivisto, JYFL, Finland

Innovative solutions:

- High-permeability material in strategic places
- Refrigeration of permanent magnets for increased remanence and coercivity (-10°C)
- Grooved plasma chamber
- Solenoids (injection, extraction): 7 double pancakes with 20 radial turns, 3 similar pancakes for fine-tuning of minimum-B (total power consumption ≈ up to 200 kW)

Safety of permanent magnets: cooling

- Convective heat transfer caused by residual gas
- → Full separation of plasma chamber and permanent magnet hexapole by a vacuum gap of about 1.5 mm
- Heat conduction via support structure of pumping chamber
- Heat radiation from surrounding structures

Plasma chamber structure (maximise B_{rad}, cooling of the permanent magnets)

HIISI Innovative Solutions

Courtesy of Hannu Koivisto, JYFL, Finland

Refrigeration of permanent magnets for increased remanence and coercivity

Magnetic shielding

Grooved plasma chamber (T<100°C)

24-segment Halbach hexapole (T<20°C)

HIISI versus CAPRICE

Courtesy of Hannu Koivisto, JYFL, Finland

HIISI specifications						
Frequency	18 GHz + 14 GHz					
Klystron power	2.4 kW + 2.4 kW					
TWTA 8-18 GHz	P _{max} : 250 W					
	2 oscillators available					
B _{rad} (24-segm)	1.3 T					
B _{rad} (36-segm)	1.45 T					
B _{inj}	2.8 T					
B _{ext}	1.3 T					
L (plasma)	120-150 mm					
L plasma chamber	400 mm					
D plasma chamber	100 mm					
T hexapole	-20> +15°C					

Comparison of analysed ion intensities

- HIISI results with 36 segment Halbach type hexapole (presented at ECRIS-2018 Workshop, Catania, September 2018)
- HIISI optimised for medium to high charge states
- CAPRICE optimised to medium charge states
- Discrepancy increases with rising charge states

	lon current (eµA)				
Argon charge state	HIISI@JYFL	CAPRICE@GSI			
9	450	70			
11	680	30			
12	570	8			
13	330	2			

EIS Testbench

ECR Injector Test Setup

 Identical design as the low energy beam line of the High Charge State Injector (HLI)

32

Optimisation of Performance

Methods and parameters for optimisation of performance

- B-field adjustment (intermediate solenoid coil)
- µ-wave frequency tuning + double/multiple frequency heating
- Biased electrodes in the plasma chamber
- Evaporation of solid materials (oven technology)
- Afterglow mode (+ combination with µ-wave methods)
- Transfer of all best practices developed in 25 years of ECRIS operation from CAPRICE ECRIS to new 18 GHz ECRIS

⁶⁴Ni deposit on inner side of the plasma electrode after 6 weeks of operation

Thank you for your attention!

ECRIS-Team:

Ralf Lang Jan Mäder Fabio Maimone Patrick Patchakui Klaus Tinschert

