

Possible Uppsala contributions to PANDA at HADES

Recent results from UU theory group

Radiative decays $B^*(J=3/2) \rightarrow B\gamma$

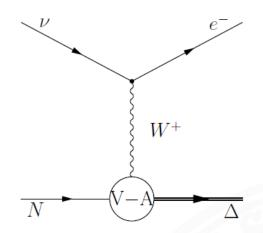
We can fit c_M to data and make predictions

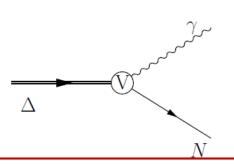
Decay	$c/(c_M e)$	BR [%]	$ c_M $ [GeV ⁻¹]
$\Delta o N\gamma$	$2/\sqrt{3}$	0.60 ± 0.05	2.00 ± 0.03
$\Sigma^{*+} \to \Sigma^+ \gamma$	$-2/\sqrt{3}$	0.70 ± 0.17	1.89 ± 0.08
$\Sigma^{*-} \to \Sigma^- \gamma$	0	< 0.024	
$\Sigma^{*0} ightarrow \Sigma^0 \gamma$	$1/\sqrt{3}$	$0.18 {\pm} 0.01$	_
$\Sigma^{*0} o \Lambda \gamma$	-1	1.25 ± 0.13	1.89 ± 0.05
$\Xi^{*0} \to \Xi^0 \gamma$	$-2/\sqrt{3}$	$\textbf{4.0} {\pm} \textbf{0.3}$	-//4
$\Xi^{*-} \rightarrow \Xi^- \gamma$	0	< 4	-//5/

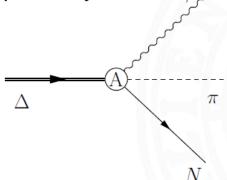
$$\Sigma^{*-} \to \Sigma^- \gamma$$
, $\Xi^{*0} \to \Xi^0 \gamma$ vanishes due to U-spin symmetry

(predictions in boldface)

M. Holmberg, SL, arXiv:1802.05168 [hep-ph], to appear in EPJ A

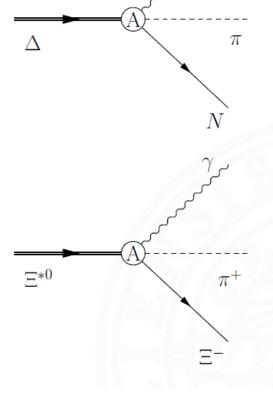

Talk by Måns Holmberg, PANDA CM, June 2018


Recent results from the UU theory group


Axial-vector transition form factors

- Interesting for scattering neutrino-nucleon to electron-Delta

• Vector and axial-vector transition form factors contribute also to $\Delta \to N\gamma$ and $\Delta \to N\pi\gamma$, respectively


Recent results from the UU theory group

Axial-vector TFFs and three-body decays

Problems:

- Needs to be disentangled from bremsstrahlung
- Hard to measure for broad Delta

→ Get some clue from radiate three-body decays of hyperons, e.g. cascades

Recent results from the UU theory group

Three body decays $B^*(J=3/2) \rightarrow B\gamma\pi$

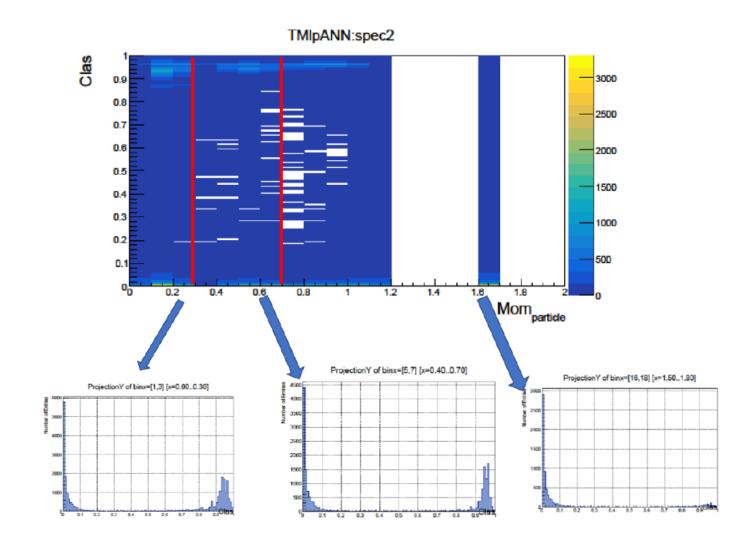
Preliminary predictions (none of these are measured!)

Decay	BR	Decay	BR
$\Sigma^{*+} \rightarrow \Sigma^{+} \pi^{0} \gamma$	1.1×10^{-6}	$\Xi^{*-} \rightarrow \Xi^{-} \pi^{0} \gamma$	7.9×10^{-6}
$\Sigma^{*+} \rightarrow \Sigma^0 \pi^+ \gamma$	3.6×10^{-5}	$\Xi^{*-} \rightarrow \Xi^0 \pi^- \gamma$	1.3×10^{-3}
$\Sigma^{*+} \to \Lambda \pi^+ \gamma$		$\Xi^{*0} \rightarrow \Xi^- \pi^+ \gamma$	1.1×10^{-3}
$\Sigma^{*-} \rightarrow \Sigma^{-} \pi^{0} \gamma$	6.0×10^{-7}	$\Xi^{*0} \rightarrow \Xi^0 \pi^0 \gamma$	1.8×10^{-6}
$\Sigma^{*-} \rightarrow \Sigma^0 \pi^- \gamma$	4.3×10^{-5}	$\Delta^{++} ightarrow p \pi^+ \gamma$	1.7×10^{-3}
$\Sigma^{*-} \to \Lambda \pi^- \gamma$		$\Delta^+ o p \pi^0 \gamma$	6.6×10^{-5}
$\Sigma^{*0} o \Sigma^+ \pi^- \gamma$	5.7×10^{-5}	$\Delta^+ o n \pi^+ \gamma$	7.4×10^{-4}
$\Sigma^{*0} \rightarrow \Sigma^- \pi^+ \gamma$	3.2×10^{-5}	$\Delta^0 o p \pi^- \gamma$	1.0×10^{-3}
$\Sigma^{*0} o \Sigma^0 \pi^0 \gamma$	2.5×10^{-8}	$\Delta^0 \rightarrow n \pi^0 \gamma$	7.2×10^{-6}
$\Sigma^{*0} \to \Lambda \pi^0 \gamma$	3.5×10^{-6}	$\Delta^- o n \pi^- \gamma$	2.3×10^{-3}

(Photon energy cut at 25 MeV)

The UU situation...

- Right now, no funding ⊗
 - Will not be able to allocate any full-time work force within the next year.
- However, we are working on finding synergies with ongoing projects at UU:
 - Neural network on hyperon selection in BESIII
 - Track finding algorithms for PANDA
 - Vertex fitting
 - Kinematical fitting


IT student project: ANN for hyperon selction with BESIII

Project plan

- selecting a Neural network interface
- <u>selecting the observables and training the neural network</u>
 (Monte Carlo sample or training on background form experimental data?)
- evaluating the method efficiency on a Monte Carlo data sample (Or testing it on clean data sample)
- applying the method and extracting the signal of interest

ANN for hyperon selection in PANDA: first test on FTS

Track finding algorithms for PANDA

- Track finder based on the cellular automaton
- Machine learning algorithms

Any approach needs to be tested on real data – PANDA@HADES the logical candidate!

Questions

- Physics priorities in PANDA@HADES
- What is needed in terms of software / analysis method development?
- Synergies with UU activities?