Status of simulation of hyperon Dalitz decays and cascade production

Joanna Kuboś¹, Rafał Lalik², Krzysztof Nowakowski², Izabela Ciepał¹ for the HADES Collaboration

¹Institute of Nuclear Physics, PAN, Kraków, Poland

² Jagiellonian University, Kraków, Poland

PANDA Collaboration Meeting GSI, Darmstadt, 7.11.2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778 National Science Centre, Poland 2016/23/P/ST2/04066 POLONEZ

Outline:

- 1. HADES detector
- 2. Benchmark reactions
- 3. Simulations and analysis
- 4. Summary

HADES@FAIR

Rich experimental programme:

- $Ag + Ag@1.7 \text{ GeV} (e^+e^-, \text{ strangeness})$
- πNN (e+e-, hadron spectroscopy)
- *p* + *p*, *p* + *Pb* (*e*⁺*e*[−], meson, *N*^{*}Δ^{*}, hyperon spectroscopy)

EPJA41(2009)243277

Forward Detector

- Straws tracking
- RPC β /ToF measurement
- ► HADES p, π, e⁺, e⁻, K excellent PID and momentum resolution

Hyperons@HADES

Benchmark reactions

1. Ξ^- (cascade particle) production

HADES puzzle

- strong enhancement in respect to existing models (UrQMD, GiBUU) in sub-threshold production in Ar+KCl@1.76 AGeV and p+Nb@3.5 GeV reaction
- no data close to threshold in NN reactions
- ► NN collisions at low energies ⇒ test of cascade production models

Benchmark reactions

2. Hyperon EM decays

Dalitz decays of $\Lambda(1520), \Lambda(1405), \Sigma(1385)$

- EM tFF \Rightarrow *q* distribution
- EM decay widths for $Y^* \to Y\gamma$

PRL114(2015)212301

Strategy of the analysis

- 3. Cut on $\Lambda(1115)$ mass.
- 4. $\pi^- + \Lambda(1115)$ candidate $\rightarrow \Xi^-$.
- 5. Topological cut: distance between $\Lambda(1115)$ and π^- tracks.
- 6. Sum of reconstructed Λ and π^- 4-vectors.

- 3. Cut on $\Lambda(1115)$ mass.
- 4. Dilepton pairs \Rightarrow $OA > 4^{\circ}$,
- $m(e^+e^-) > m(\pi^0).$
- 5. Sum of reconstructed Λ and e^+e^- 4-vectors.

1. Ξ^- (cascade particle) production in HADES **0** 4.5 GeV

Registration of 2 π^- s in HADES and p in FD required for the Ξ^- reconstruction.

Detected particles -

1. Ξ^- (cascade particle) production

The	most	contributing	BG	sources:
-----	------	--------------	----	----------

$$egin{array}{l} \mathcal{K}^0_s
ightarrow \pi^+\pi^- \ \Lambda
ightarrow p\pi^- \ \Sigma^0
ightarrow \Lambda\gamma \end{array}$$

No.	reaction	cross-section [μ b]
0.	$K^+K^+p\Xi^-$	4.8
1.	$pp2\pi^-2\pi^+$	600
2.	$p\Lambda K_s^0\pi^+$	100
3.	$p\Lambda K^+\pi^+\pi^-$	30
4.	$n\Lambda K_s^0 2\pi^+$	30
5.	$p\Sigma^0 K_s^0 \pi^+$	20
6.	$pp2K_s^0$	20

1 multi- π^- production 2–5 Λ or Σ^0 and K_s^0 as a π^- source 6 $2K_s^0$ as pions source

1. Ξ^- (cascade particle) production

 $\Lambda(1115)$ reconstruction

 Ξ^- reconstruction

2. Hyperon EM decays in HADES @ 4.5 GeV

Registration of π^- in HADES, *p* in HADES or FD and dilepton in RICH required for the $\Lambda(1520)$ reconstruction.

2. Hyperon EM decays

The most contributing BG sources:

$$\begin{array}{c} \pi^{0} \rightarrow e^{+}e^{-}\gamma \\ \mathcal{K}^{+} \rightarrow \pi^{+}e^{+}e^{-} \\ \Lambda \rightarrow p\pi^{-} \end{array}$$

No.	reaction	cross-section $[\mu b]$
0.	<i>pK</i> +Λ(1520)	50
1.	$ ho K^+ \Lambda \pi^0$	100
2.	$ ho K^+ \Lambda 2 \pi^0$	20
3.	$ ho K^+ \Lambda 3 \pi^0$	7
4.	$pp\pi^+\pi^-\pi^0$	1840
5.	$pp\pi^+\pi^-2\pi^0$	300
6.	pn $2\pi^+\pi^-\pi^0$	200
7.	Λ(1520) decays	50

- 1–3 Λ and a dilepton source (K^+ or π^0)
- 4-6 multi pion production
 - 7 other reactions with $p\Lambda(1520)K^+$ in the final state

Simulations & analysis 2. Hyperon EM decays

Di-lepton invariant mass

 Λe^+e^- invariant mass

Experimental plans

Plans of the HADES Collaboration for the FAIR-Phase0:

- \blacktriangleright Heavy-ion beam (Ag+Ag) 2018 \rightarrow 2019
- Pion beams 2019 (??)
- ▶ Proton beams (p+p) E=4.5 GeV 2020 (??) \Rightarrow FAIR-Phase0/HADES-PANDA

Count rate estimation (preliminary):

Beam rate $= 10^8$ part/s		extrapolated from pp@3.5 GeV	
$Luminosity = 2 \cdot 10^{31} cm^{-2} s^{-1}$	Ĵ	with assumption 200 kHz DAQ	

H^* production	$pp ightarrow pK^+ \Lambda^*$	$ m ho pp ightarrow pK^+\Sigma^*$	$pp ightarrow \Xi^- K^+ K^+ p$
σ_{tot} :	130 <i>µ</i> b	80 µb	4.8 µb
H* Dalitz decay	$\Lambda^* ightarrow \Lambda e^+ e^-$	$\Sigma^* ightarrow \Lambda e^+ e^-$	—
σ_{Dalitz}	8.3 $\cdot 10^{-3} \mu b$	7.0·10 ^{−3} µb	—
$\varepsilon_{H^* rec}$:	0.5%	0.5%	0.79%
Expected count rate:	34 part/day		$8.64 \cdot 10^4$ part/day

Hyperon studies:

- internal baryonic structure and test of the quark models
- ▶ Dalitz decays of hyperons \Rightarrow access to the interesting q^2 region
- enhancement of Ξ production HADES puzzle

Outlook:

- ▶ PID in FD \rightarrow better *S*/*B* ratio
- improvement of the PID in HADES
- \blacktriangleright HADES upgrade and measurements at the SIS18 \rightarrow better statistics
- ▶ in the (near) future measurements at the new SIS100@FAIR

Cuts estimation for Ξ^- reconstruction

Simulation of the cascade Ξ^- Simulated reaction channel:

 $p(4.5 \,\mathrm{GeV}) p
ightarrow K^+ K^+ p \Xi^-$

Cross section estimation:

- 1. cross-sections ratio $\frac{\sigma \Xi^-}{\sigma \Lambda + \sigma \Sigma^0}$ measured by HADES in p-Nb and Ar-KCl
- 2. $\sigma\Lambda$ known from literature (L-B)
- 3. cross-sections ratio $\frac{\sigma\Lambda}{\sigma\Sigma^0}$ measured by COSY, BNL and LB
- 4. from 2,3 $\rightarrow \sigma \Sigma^0$
- 5. from 1,2,4 $\rightarrow \sigma \Xi^-$

Strangeness production via high mass baryon resonances

Figure 2. [Color online] Invariant mass distribution of N^* resonances produced in collisions of Ca+Ca at a fixed target beam energy of $E_{\rm lab} = 1.76$ A GeV. We consider events with HADES experiment specifications. The vertical green dashed line indicates the maximum mass a N^* can have in an elementary N + N collision at the same beam energy. The vertical red line depicts the ϕ production threshold mass.

Steinheimer, J.Phys.G43 (2016)015104

Hyperons@HADES

Electromagnetic decay widths for $Y^* ightarrow Y\gamma$

Quark models

Taylor et al. (CLAS Collaboration), Phys. Rev. C71 (2005) 054609

Radiative decays are a sensitive test of the hyperon structure

- Predictions of decay widths (Quark, Bag, χPT... models) span over one order of magnitude
- Recent experimental results (CLAS) show very large decay widths

CLAS: PRD83(2011)072004, PRC71(2005)054609

I=0

K[·] p

 $0.85\% \pm 0.15\%$

 $\Delta I =$

Λ(1520)

 $\Gamma = 15.6$

Λ(1405)

 $\Gamma = 50$

J = 1/2-

 $\Delta I=0$

Λ(1115) J =1/2⁺

J= 3/2-

I=1

 $\Sigma^{*}(1385)$

 $J = 3/2^+$

 $1.2\% \pm 0.13\%$

Σ(1192)

 $J = 1/2^{+}$

100 %

= 36

Hyperon Dalitz decays

 $Y^*
ightarrow Ye^+e^-$ (via virtual massive γ^*) $Q^2 = -q^2 = -(M_Y - M_\Lambda)^2$

- measurement of time-like γ^* complementary to space-like $\gamma \Rightarrow$ predicted to be sensitive to meson cloud effects \Rightarrow coupling to Vector Mesons (ϕ/ω ($s\bar{s}$ content!), ρ) (Ramalho, Williams)
- Dalitz Decays of non-strange baryons: EM Transition Form Factors (TFF)

Vector Meson Dominance model

Strong effects for hyperons predicted by VDM:

Internal structure of baryons

In SU(3) flavour symmetry $\Delta \to N\gamma^*$ equal to $\Sigma^*(1385) \to \Lambda\gamma^*$

J. Kuboś

Hyperons@HADES