

ASIC/TRB3 RESULTS STT

NOV-7, 2018 | PETER WINTZ (FOR THE STT GROUP)

Mitglied der Helmholtz-Gemeinschaft

OUTLINE ASIC/TRB3 RESULTS

Time and Time-over-Threshold Measurement

- Testbeams
- Calibration & tracking
- Spatial resolution
- PID methods
- PID results

TESTBEAMS IN 2016 & 2018

- Proton and deuteron beams at COSY, momentum range: 0.5 3.0 GeV/c
- Covered dE/dx range: ~ 5 50 keV/cm (= 1-10× MIP, in Ar/CO₂ at 2 bar)
- Setups with 24 straws per layer, several layers readout
- Two gas mixtures: $Ar/CO2(10\%) \rightarrow 150$ ns tmax, $Ar/CO2(20\%) \rightarrow 220$ ns tmax
- Tracks with (>) 24 hits, similar to PANDA-STT

Test setups in new beam area. Beam from the back with ~2m beam line height.

Straw signals (in-beam)

One of the two straw test systems.

Beam enters from the right.

CALIBRATION & TRACKING

4000

3500 3000 2500

2000 1500 1000

t0 vs channel 1st hits corr

ProjectionX of biny=[41,150] [y=40.0..150.0]

Switched off in Apr-18 BT

Straw channel no

Number of Entries

300

200

- Calibration isochrone radius *r(t)*
- $\frac{N}{R} = \frac{\sum n_i}{r(t_i)} \to r(t) = \sum P_i \times t^i$
- 1st tracking, $\chi 2$ fit to isochrones
- Re-calibration with reco tracks (iterative)
 - Track-wire distance \leftrightarrow meas. drift time \rightarrow r(t)
 - Residual distribution, mean shifted $? \rightarrow r(t)$ shift by $R_0=P_0$
- Final tracking
 - Hit filter, reject single outliers (e.g. ~ 15% δ -electr.)

Reconstruct tracks with uncorrected r(t)

 Determine residual shifts (above/below wire) Channel no.

residual distance

trackfit (≈ true track)

isochrone

- Improved residual spread and symmetry
- Global r(t) used, R₀ shifts for individ. channe

lumber of Entries

Forschungszentrum

R(T) CALIBRATION & ITERATION uncorrected corrected

ProjectionX of biny=[1,150] [y=0.0..150.0]

Residuals (mm)

Channel vs Residuals (above wire)

Channel vs Residuals (below wire)

sochrone Residual (µm)

p. 6

SPATIAL RESOLUTION RESULTS **ASIC/TRB3**

- Proton and deuteron data (2016 & 2018), large dE/dx range covered (~1-10 x mips)
- Results far better than design goal (150 μ m) \rightarrow confidence for STT at PANDA
- Hit filter: reject single outliers (~15%, e.g. δ -electrons)
- Measurements at worst location (sag at tube middle)
- ASIC basic setting: gain=1, pkt=20ns, thresh=10mV, ...

PID OBSERVABLE (1)

Time-over-Threshold, Time Corrected

- ToT is drift time dependent ($v_{drift} \propto 1/r$)
- ToT vs drift time, polynomial fit

 $ToT(t_{dr}) = \sum_{i=0}^{4} P_i \times t_{dr}^i$ $ToT(t_{dr}) \rightarrow ToT(t_{dr}=0) \equiv \widetilde{ToT}$

Truncated mean (~ 30 % highest hits)

ToT | trunc

- Drift times needed (t0)
- Track specific (dE/dx)

totcorr vs time

800

700

6000

5000

PID OBSERVABLE (2)

Time-over-Threshold / Tracklength

- ToT/dx almost constant over r = 0 4 mm
- $\frac{\sum_{hits} ToT}{\sum_{hits} dx}$ better (averaging) than $\sum_{hits} \frac{ToT}{dx}$
- Truncate Landau-tail (~ 30% of highest hits)
- ToT raw data sufficient (no t0 needed)
- Coarse tracking for dx sufficient

90Ē

10E

ToT/dx (ns/mm)

TOT PID RESULTS

- Proton & deuteron data, 2016 & 2018
- Two gas mixtures CO2 10% & 20%
- ASIC BL, NL and low thresholds stable
- Different ASIC parameters checked
- ToT/dx with β^{-2} dependence

PID OBSERVABLES

- Separation power S versus $\boldsymbol{\beta}$ for proton and deuteron data
- Proton at 2.5 GeV/c as reference (=mip)
- Which observables is best for S ?

• $\Sigma ToT/\Sigma dx$ (red)

- raw ToT data, no precise t0 needed
- coarse tracking for dx sufficient
- suited for online determination

• ToT |_{time correc.} (blue)

- precise t0 knowledge needed
- parametrisation ToT as function of drift time, track specific (dE/dx)

ngszentrun p. 11

PID RESULTS

• Proton separation power compared with TDR p/ π separation simulation results (black)

Peter Wintz - STT - TRK Session

- pions minimum ionising, but dip \rightarrow not exactly comparable
- Similar separation at $\beta \sim 0.9$ and $\beta \sim 0.3$
- Difference around $\beta \sim 0.5~(\pi dip)$
- Comparison with sADC data (purple)
 - Prototype FADC (240 MHz)
 - Pre-series system data not yet available

SUMMARY

- ASIC performance results inline with design goals for spatial resolution and PID
- ASIC default setting established (out of > 6000 sets)
- Full dE/dx range covered by testbeams at COSY
- Stable ASIC & TRB3 operation during period 2016-18 (low NL, low thresholds, ..)
- Further investigations ongoing
 - Individual BL tuning and amplitude/time-over-threshold variation
 - Signal propagation along wire and track angle dependence
- Mechanical frontend-layout for STT challenging
 - Limited space, ~ 1cm FEB spacing, cooling scheme
 - Final design to be done

for your

attention

