The CBM/HADES/PANDA-DiRICH Project and Experiences with the Series Production

Michael Traxler, GSI

2018-11-06
Outline

1. The DiRICH-Project
2. Experiences and Problems
Motivation

- Joint Venture Frontend-Electronics for MAPMT/MCP-PMT readout for

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Number of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANDA Barrel DIRC</td>
<td>~11k</td>
</tr>
<tr>
<td>CBM RICH</td>
<td>~65k</td>
</tr>
<tr>
<td>HADES RICH</td>
<td>27392</td>
</tr>
</tbody>
</table>

- a lot of work to develop, qualify the electronics and write the necessary control and analysis software
- task is shared among all groups, experience is shared!
- many more applications will most likely jump on the moving train...
DiRICH FEE

- 32 channels
- galvanic isolation of PMT to FEE (transformer)
- \(\sim\) factor 30 gain amplifier, 12mW
- individual threshold for each discriminator
- TDC with \(\sim 10\)ps intrinsic time precision (ToT measurement)
- data acquisition system included (TRBNet)
- data is sent out on the same connector
- only one connector for everything => cable-free system
DiRICH FEE / Full module

- backplane for 6 MAPMTs
- backplane routes all PMT-signals, clock, trigger, power, HV and 2Gb/s DAQ per DiRICH
- Power (linear or DC/DC-converter) and DAQ-data-concentrator (12:1) modules are needed
- different variations have been built:
 - 4 MAPMTs
 - 4 MCP-PMTs
 - the rest of the infrastructure stays as it is
The CBM/HADES/PANDA-DiRICH Project and Experiences with the Series Production

The DiRICH-Project

HADES RICH / PMT Dark Rates
We encountered problems until we reached the goal!
late in the project (too late to change the FPGA):
- ECP5UM needs lowering of the SERDES-PLL analog voltage by ~60mV to work on all FPGAs stable at 2Gb/s.
- FPGA-SERDES works for other transmission speeds
- still not understood but workaround works for 1000 DiRICH modules
 - High risk: Not understood problems normally strike back
 - only way to stay inside the time schedule
The CBM/HADES/PANDA-DiRICH Project and Experiences with the Series Production
Experiences and Problems

Other Technical Lessons Learned I

LV-supply

- Decided to go for external power-supplies to get best front-end performance
 - DC/DC convertors on Power-Supply-module only 20mm away from the DiRICH produces visible noise in the system
 - Standard Industry AC/DC convertors are used
 - bad noise performance directly at the output
 - ~1m distance (and cable) the noise is as low as operated with a lab-power-supply
- Delivering 1.1V @ 1000A to the FEE is not a big deal
 - and not dangerous (power supplies have a current limit and shut down)
Cooling

- MAPMTs should be operated below 30°C to reduce the dark rate and maximize by this the life-time.
- After simulations and many measurements.
- HADES-RICH: the temperature of the PMTs is quite indirectly coupled to the FEE-electronics temperature.
 - Keeping the FEE temperature low in every corner is demanding.
 - It is much more efficient to cool the PMTs.
- 3 normal 200mm fans are enough to cool the whole HADES RICH FEE: ~1500W FEE (incl. LDO) + ~500W cables.
- Conclusion
 - Put temperature sensors everywhere to reduce the guessing.
 - Seems to be hard to simulate and needs quite some testing to find the least effort strategy for cooling.
PCB Production

- demanding PCBs needed to reach the channel density
 - stacked micro-vias, buried vias
 - up to five PCB-pressing steps needed
 - all fine for prototypes until we asked for the "mass" production

- The PCB-manufacturer claimed that the yield was too bad and they don’t want to produce it...
 - Demanded change in layout
 - would need a new test
 - delay of project beyond the deadline (~70 working days to get the PCBs)
 - only after long negotiations they continued

- worth the effort: only this kind of PCB-technology allowed a "noise-free" operation of small signals and DAQ on the same connector
1100 DiRICH result in ~1 Million components

electronics component market is in allocation

delivery of a 100nF capacitor: 52 weeks (we order that!)

results in a lot of effort to find alternatives from different vendors or even change technology from wire wound coils to printed coils

Acceptance of Order

<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>
<th>Payment Date</th>
<th>Lead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>040</td>
<td>30.000</td>
<td>MLCC 0201 (0.6 x 0.3 x 0.3 mm) 33.0 nF 6.3V X5R (EIA) ±10% (K)</td>
<td>4.22</td>
<td>28.09.18</td>
<td>13.05.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herstellerartikel-Nr.: CC0201KR5R5BB333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hersteller: YAGEO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPE: 15000 Stück</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zolltarif-Nr.: 85322400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ursprungsland: China</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erzeugnisberechtigt: NEIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Der genannte Liefertermin ist aufgrund der Liefersituation unseres Herstellers nicht verbindlich!</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>
<th>Payment Date</th>
<th>Lead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>050</td>
<td>75.000</td>
<td>MLCC 0201 (0.6 x 0.3 x 0.3 mm) 10.0 nF 6.3V X7R (EIA) ±10% (K)</td>
<td>2.22</td>
<td>28.09.18</td>
<td>13.05.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herstellerartikel-Nr.: CC0201KR7R5BB103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hersteller: YAGEO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPE: 15000 Stück</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zolltarif-Nr.: 85322400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tender process for PCB Assembly

- The administration of the University was not able to conduct the whole process of the European wide tender in a compatible time frame (<3 month)
- More complicated: external company also needs to acquire components in a market in allocation: each replacement part needs approval by developer
- Our deadline in 5 month (beam time) required to shift all production to GSI
 - At GSI we were able to directly put the needed resources in materials procurement (even a day before Christmas!) and PCB-assembly
 - Causing friction and delays for other projects
Production Conclusion

Plan ~1 year for a stress-free formal tender process, material procurement and production of larger quantities of electronics with electronics-test, solder error correction and some contingency (for additional delays, like e.g. PCB-production failures).
Thanks!

Thank you for your attention!