FAIR LATTICE QCD DAYS GSI Helmholtzzentrum für Scherionenforschung, Darmstadt, November 23-24, 2009

Critical behavior of light quark and baryon number fluctuations

Christian Schmidt Universität Bielefeld

Literature:

- A. Bazavov et al. [hotQCD], PRD 80 (2009) 014504
- M.Cheng et al [RBC-Bielefeld] arXiv:0911.2215
- S. Ejiri [RBC-Bielefeld], arXiv: 9090.5122
- M. Cheng et al. [RBC-Bielefeld], PRD 79 (2009) 074505
- C. Schmidt, EPJ C61 (2009) 537

"EoS at $\mu_B = 0$ $(N_{\tau} = 8)$ " "physical masses" "critical behavior $\mu_B = 0$ $(N_{\tau} = 4)$ " "fluctuations at $\mu_B = 0$ $(N_{\tau} = 4, 6)$ " "EoS at $\mu_B > 0$ $(N_{\tau} = 4, 6)$ "

FAIR LATTICE QCD DAYS

Fr

PQCD, effective theories

GSI Helmholtzzentrum für Scherionenforschung, Darmstadt, November 23-24, 2009

QGP

Overview:

- ★ Introduction and motivation the expected QCD phase diagram
- ★ Lattice QCD at high temperature: analyzing the critical behavior

0 0

Lattice

Hadron-

gas

★ Lattice QCD at high temperature <u>and nonzero density</u> Hadronic fluctuations and the critical point

★ Summary

The phase diagram

Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter ?
- What governs the transition from Quark and Gluons into Hadrons ?

The QCD phase diagram

Key questions

- What are the phases of strongly interacting matter and what role do they play in the cosmos ?
- What does QCD predict for the properties of strongly interacting matter ?
- What governs the transition from Quark and Gluons into Hadrons ?

Places to find QGP ?

- In the early universe
- In the laboratory: RHIC, LHC, FAIR
- In the cores of neutron stars ?

Analyze critical behavior close to the critical end-point!

QGP and HIC

(schematic picture)

The little toolbox for puzzle fans

hadron resonance gas

$$\ln Z(T, V, \mu_B, \mu_S, \mu_Q) = \sum_{i \in hadrons} \ln Z_{m_i}(T, V, \mu_B, \mu_S, \mu_Q)$$

$$\sum_{i \in mesons} \ln Z_{m_i}^B(T, V, \mu_S, \mu_Q) + \sum_{i \in baryons} \ln Z_{m_i}^F(T, V, \mu_B, \mu_S, \mu_Q)$$
baryons:
$$\frac{p_i}{T^4} = \frac{d_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 \sum_{l=1}^{\infty} (+1)^{l+1} l^{-2} K_2(lm_i/T) \cosh(lS_i\mu_S/T + lQ_i\mu_Q/T)$$
mesons:
$$\frac{p_i}{T^4} = \frac{d_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 \sum_{l=1}^{\infty} (-1)^{l+1} l^{-2} K_2(lm_i/T) \cosh(lB_i\mu_B/T + lS_i\mu_S/T + lQ_i\mu_Q/T)$$

$$\frac{p_i}{T^4} = \frac{d_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 \sum_{l=1}^{\infty} (-1)^{l+1} l^{-2} \frac{K_2(lm_i/T)}{\cosh(lB_i\mu_B/T + lS_i\mu_S/T + lQ_i\mu_Q/T)}$$

universal scaling

$$f_s(t,h,\dots) = b^{-d} f_s(b^{y_t}t,b^{y_h}h,\dots)$$

perturbation theory ($\mathcal{O}(g^6[\ln(1/g) + \text{const.}]))$

free quark gas $(\mathcal{O}(g^0))$

$$\frac{p}{T^4} = \frac{8\pi^2}{45} + \sum_{f=u,d,\cdots} \left[\frac{7\pi^2}{60} + \frac{1}{2} \left(\frac{\mu_f}{T} \right)^2 + \frac{1}{4\pi^2} \left(\frac{\mu_f}{T} \right)^4 \right]$$

disconnected chiral susceptibility

suggests continuum extrapolated value $< 170 {
m ~MeV}$

need even finer lattices or more improved actions (HISQ-fermions)

mass dependence of the CEP

Universal scaling in QCD (Nt=4)

Universal scaling in QCD (Nt=4)

Lattice QCD at nonzero density (I)

ullet direct MC-simulations for $\mu > 0$ not possible

$$egin{aligned} Z(V,T,\mu) &= & \int \mathcal{D}A\mathcal{D}\psi\mathcal{D}ar{\psi}\,\exp\{S_F(A,\psi,ar{\psi})-eta S_G(A)\}\ &= & \int \mathcal{D}A\,\det[M](A,\mu)\exp\{-eta S_G(A)\}\ & ext{ complex for }\mu>0 & ext{ Interpretation as probability is necessary for MC-Integration} \end{aligned}$$

_

$$ightarrow$$
 perform a Taylor expansion around $\mu=0$

Hadronic fluktuations (I)

temperature dependence dominated by the regular part of the free energy: **similar to energy density**

$$\chi^2_X \propto |T - T_c|^{1-lpha} + ext{regular}$$
 $lpha pprox -0.25$

Hadronic fluktuations (I)

B-Kurtosis (c_4/c_2)

Hadronic fluctuations (II)

B-Kurtosis (c_4/c_2)

Hadronic fluctuations (III)

at $\mu_B > 0 \; (\mu_S = \mu_Q = 0)$

LO introduces a peak in the fluctuations/correlations, NLO shifts the peak towards smaller temperatures

truncation errors become large at $\,\mu_B/T\gtrsim 1.5$

The critical line (chiral limit)

combined fit to c_2, c_4, c_6

scaling field (chiral limit): $t = \frac{T - T_c}{T_c} + \kappa \mu_B^2$

free energy: $f = A_{\pm} |t|^{2-\alpha} + \text{regular}$

 $rac{ ext{critical line:}}{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \mu_B^2$

expected phase diagram

 $2! \cdot c_{B,S}^{2,0} \sim \mp 2A_{\pm}(2-\alpha)\kappa|t|^{1-\alpha} + b_{2}t + c_{2};$ $4! \cdot c_{B,S}^{4,0} \sim -12A_{\pm}(2-\alpha)(1-\alpha)\kappa^{2}|t|^{-\alpha} + b_{4}t + c_{4};$ $6! \cdot c_{B,S}^{6,0} \sim \pm 120A_{\pm}(2-\alpha)(1-\alpha)(-\alpha)\kappa^{3}|t|^{-1-\alpha}.$

coefficients c_2, c_4 dominated by regular part

ightarrow will work better with $c_2^{\psi\psi},\ldots$

The critical line (chiral limit)

fit to $c_2^{ar{\psi}\psi}$

scaling field (chiral limit): $t = \frac{T - T_c}{T_c} + \kappa \mu_B^2$ magnetic EoS:

$$M = h^{1/\delta} f_G(t/h^{1/\beta\delta})$$

 $\frac{\text{critical line:}}{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \mu_B^2$

expected phase diagram

$$T + m_u = m_d = 0$$

line of 2. order
transitions O(4)
Z(2)
critical
end-point
line of 1. order
transitions

The critical endpoint (I)

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{CEP}$
- determine the radius of convergence at this temperature $\rightarrow \mu^{CEP}$

all coefficients positive: singularity on the real axis! C_2 C_4 C_4 C_8 $T_{T_{10}}^{CEP}$ T_{8}^{CEP}

first non-trivial estimate of T^{CEP} by c_8 second non-trivial estimate of T^{CEP} by c_{10}

$$p = c_0 + c_2 \left(\mu_B/T\right)^2 + c_4 \left(\mu_B/T\right)^4 + \cdots$$

 $\chi_B = 2c_2 + 12c_4 \left(\mu_B/T\right)^2 + 30c_6 \left(\mu_B/T\right)^4 + \cdots$

$$ho_n(p) = \sqrt{c_n/c_{n+2}}$$
 $ho = \lim_{n o \infty}
ho_n$

The critical endpoint (II)

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{CEP}$
- determine the radius of convergence at this temperature $\rightarrow \mu^{CEP}$

first non-trivial estimate of $T^{\rm CEP}$ by c_8 second non-trivial estimate of $T^{\rm CEP}$ by c_{10}

$$p = c_0 + c_2 \left(\mu_B/T\right)^2 + c_4 \left(\mu_B/T\right)^4 + \cdots$$

 $\chi_B = 2c_2 + 12c_4 \left(\mu_B/T\right)^2 + 30c_6 \left(\mu_B/T\right)^4 + \cdots$

The critical endpoint (III)

What is the asymptotic behavior of ρ_n ?

scaling field: $t = \frac{T - T_c(\mu_c)}{T_c(\mu_c)} + \kappa' \left(\mu_B^2 - \mu_c^2\right)$

free energy: $f = A_{\pm} |t|^{2-\alpha} + \text{regular}$

expected phase diagram

Taylor vs. Pade

Pade approximants [2,2]
and [4,2] have a pole at
$$\rho_4$$
 and ρ_6 , respectively

- Universal scaling behavior is observed near the chiral limit of (2+1)-flavor QCD
- A Taylor expansion of the pressure is used to obtain lattice QCD results at nonzero density and, in addition, provides a method to locate the CEP.
- Fluctuations and correlations are well described by a free gas of quarks above T>(1.5-1.7)Tc and by a resonance gas for T<Tc.
- ullet Truncation errors of the Taylor series becomes large for $\mu_B/T\gtrsim (1-1.5)$
- The Taylor expansion method will provide valuable input for HIC phenomenology in the future.