Lattice QCD studies of hadron structure

Philipp Hägler

in collaboration with LHPC and QCDSF/UKQCD

supported by

excellence cluster universe

Lattice QCD calculations of hadron structure

Overview of numerical results

> 2

QCDSF improved Wilson action parameters

		#	ß	K	L	a[fm]	L[fm]	\mathfrak{m}_{π} [GeV]	$m_{\pi}L$
$-N_{f} = 2$ dynamical Wilson - fermions		1	5.20	0.13420	16	0.0856	1.37	1.348	9.4
		2	5.20	0.13500	16	0.0856	1.37	0.956	6.6
with (NP) clover - improvement		3	5.20	0.13550	16	0.0856	1.37	0.67	4.7
- only connected contributions		6	5.25	0.13460	16	0.0794	1.27	1.225	7.9
		7	5.25	0.13520	16	0.0794	1.27	0.949	6.1
		8	5.25	0.13575	24	0.0794	1.91	0.635	6.1
		9	5.25	0.13600	24	0.0794	1.91	0.457	4.4
	(- lattice spacing fixed using)	11	5.29	0.13400	16	0.0753	1.2	1.511	9.2
		12	5.29	0.13500	16	0.0753	1.2	1.102	6.7
	$m_N \leftrightarrow r_0 = 0.467 \text{fm}$	13	5.29	0.13550	12	0.0753	0.9	0.945	4.3
	- three projectors	14	5.29	0.13550	16	0.0753	1.2	0.874	5.3
		15	5.29	0.13550	24	0.0753	1.81	0.857	7.8
	$\widetilde{\Gamma}_{\rm unpol} = \frac{1}{2}(1+\gamma_0),$	16	5.29	0.13590	12	0.0753	0.9	0.883	4.
		17	5.29	0.13590	16	0.0753	1.2	0.66	4.
	-	18	5.29	0.13590	24	0.0753	1.81	0.629	5.8
	$\widetilde{\Gamma}_{r,s} = \frac{1}{r}(1+\gamma_{r})\gamma_{r}\gamma_{r,s}$	19	5.29	0.13620	24	0.0753	1.81	0.414	3.8
	$2^{(1+70)/5/1,2}$	21	5.29	0.13632	32	0.0753	2.41	0.282	3.4
	- three sink - momenta	22	5.29	0.13632	40	0.0753	3.01	0.276	4.2
	- three shik - momenta	23	5.29	0.13640	40	0.0753	3.01	0.168	2.6
	p' = (0,0,0), (1,0,0), (0,1,0)	24	5.40	0.13500	24	0.0672	1.61	1.183	9.7
	non nortunitativo	25	5.40	0.13560	24	0.0672	1.61	0.917	7.5
	– non – perturbative	26	5.40	0.13610	24	0.0672	1.61	0.648	5.3
	operator renormalization	27	5.40	0.13625	24	0.0672	1.61	0.558	4.6
I I		28	5.40	0.13640	24	0.0672	1.61	0.451	3.7
		129	5.40	0.13660	- 32	0.0672	2.15	0.255	2.8

8

Proton mean square radii

Proton mean square radii

Proton mean square radii

Ph. Hägler, FAIR LQCD days `09, GSI

Nucleon isovector anomalous magnetic moment

Nucleon isovector anomalous magnetic moment

Nucleon axial vector coupling constant published data

Nucleon axial vector coupling constant

Tensor charge

$$\bullet \left(g_T = A_{T10}(0) = \int_{-1}^{+1} dx \delta q(x) = \langle 1 \rangle_{\delta q} - \langle 1 \rangle_{\delta \bar{q}} \right)$$

Tensor charge

0.0

0.0

0.2

0.4

0.6

 m_{π}^2 [GeV²]

0.8

1.0

1.2

Momentum fraction of quarks in the nucleon

Momentum fraction of quarks in the nucleon

xⁿ⁻¹- (Mellin-) moments of GPDs

Ph. Hägler, FAIR LQCD days `09, GSI

LHPC mixed action lattice parameters

Ph. Hägler, FAIR LQCD days `09, GSI

17

A, B, C

LHPC $n_f=2+1$ mixed; tbp (updating PRD 2008, 0810.1933)

Form factors of the energy momentum tensor

Nucleon spin structure and spin sum rule

Correlations between momenta, positions, spins

Transversely polarized quarks in transversely polarized nucleons

Intrinsic transverse momentum densities of the nucleon

Challenges and Prospects

routinely include disconnected diagrams

full singlet renormalization/evolution ↔ mixing with gluon operators (LATTICE `09 plenary talk by Renner)

great potential in (non-trivial) pion mass dependence in combination with ChPT requires strongly improved statistics (feasible at not too small pion masses)

as always, I am indebted to my collaborators

M. Altenbuchinger, B. Musch, M. Gürtler, W. Weise

(TUM)

B. Bistrovic, J. Bratt, M. Lin, J.W. Negele, A. Pochinsky, M. Procura, S. Syritsyn (MIT) H. Meyer (CERN), R.G. Edwards, H.-W. Lin, D.G. Richards (JLab) K. Orginos (W&M) M. Engelhardt (New Mexico) G. Fleming (Yale) B. Musch (TU München) D.B. Renner (DESY Zeuthen), W. Schroers (Taiwan)

(LHPC)

D. Brömmel (Southampton), M. Diehl (DESY), M. Göckeler, Th. Hemmert, A. Schäfer (Regensburg U.) M. Gürtler (TU München) R. Horsley, J. Zanotti (Edinburgh U.) Y. Nakamura (DESY Zeuthen) P. Rakow (Liverpool U.) D. Pleiter, G. Schierholz (DESY Zeuthen) H. Stüben (ZIB)

(QCDSF/UKQCD)

References: QCDSF PoS(LAT2006)120, 0710.1534, PRL 98 222001 (2007), PRL 2008 (0708.2249), Zanotti et al. Pos(LAT2009), Brömmel et al EPJC 2007; LHPC PRD 77, 094502 (2008), 0810.1933; Diehl&Hägler EPJC hep-ph/0504175; Musch et al. 0811.1536; Musch arXiv:0907.2381; PhH, Musch et al. arXiv:0908.1283